PRIORITY CLIMATE ACTION PLAN FOR THE CHICAGO METROPOLITAN STATISTICAL AREA

AN I .

den.

Metropolitan Mayors Caucus | CMAP

Leven Ro Ble and and the following and the for hard a

2024

Contents

C	nicago N	Metropolitan Statistical Area Priority Climate Action Plan	4
A	cknowle	edgements	4
D	efinitior	ns and Acronyms	6
1	Intro	oduction	9
	1.1	CPRG overview	9
	1.1.1	Phase 1 – Planning	9
	1.1.2	2 Phase 2 – Implementation	9
	1.2	PCAP Overview	10
	1.3	Approach to Developing the PCAP	10
	1.3.2	Existing Climate Action Plans	11
	1.3.2	2 PCAP Team	12
	1.3.3	3 Stakeholder Engagement	12
	1.3.4	Identifying and Quantifying GHG Reduction Strategies	13
	1.4	Scope of the PCAP	16
2	Gree	enhouse Gas (GHG) Inventory	17
	2.1.1	Methodology - Underlying data	17
	2.2	Emissions calculation by sector	18
	2.3	2020 Chicago MSA Greenhouse Gas Inventory	20
	2.4	Results by county	22
	2.5	Results by state	24
	2.5.2	Past inventories and trends	28
3	GHG	Emissions Projections	31
4	GHG	Reduction Targets	31
5	Prio	rity GHG Reduction Strategies for the Chicago MSA	32
	5.1	Summary of Priority GHG Reduction Strategies	34
	5.2	Priority GHG Reduction Strategies with Quantified Measures	35
6	Com	plete List of GHG Reduction Strategies	41
	6.1	Demonstrate Leadership	42
	6.2	Decarbonize Energy Sources	43
	6.3	Optimize Building Energy	44
	6.4	Implement Clean Energy Policies	46
	6.5	Decarbonize Transportation	47
	6.6	Reduce Vehicle Miles Traveled	49

		_	A PCAP 3/1/2024
6		nage Water and Waste Sustainably	
6	.8 Sust	ain Ecosystems to Sequester Carbon	53
7	Low Inco	me Disadvantaged Communities Benefits Analysis	54
	7.1.1 I	dentify Chicago MSA LIDACs	54
	7.1.2 l	IDAC Engagement in Climate Action Planning	56
	7.1.3 I	Estimate potential benefits of GHG emission reduction measures to LIDACs	57
	7.1.4 l	IDAC and Climate Impacts and Risks	57
8	Intersect	ion with Other Funding Availability	58
8	.1 Pote	ential funding and resources	58
9	Next Step	DS	62
10	Appendix	A: Priority GHG Reduction Strategy Quantification Methodology	63
	10.1.1	Decarbonize Energy Source - DE2	63
	10.1.2	Optimize Building Energy - BE1	64
	10.1.3	Optimize Building Energy - BE2	64
	10.1.4	Optimize Building Energy - BE3	65
	10.1.5	Optimize Building Energy - BE4	70
	10.1.6	Optimize Building Energy - BE6	71
	10.1.7	Decarbonize Transportation - DT7	72
	10.1.8	Decarbonize Transportation - DT9	74
	10.1.9	Decarbonize Transportation - DT11	75
	10.1.10	Decarbonize Transportation - DT15	76
	10.1.11	Reduce Vehicle Miles Traveled- VMT11	76
	10.1.12	Manage Water and Waste Sustainably - W1	77
	10.1.13	Manage Water and Waste Sustainably - W3	79
11	Appendix	B Stakeholder Engagement in Chicago Regional Climate Action Planning (20)19-2020)80
12	Appendix	C: Greenhouse Gas Inventory Methodology and Documentation	84
	12.1.1	Data Sources	84
	12.1.2	Process	84
	12.1.3	Quality Assurance Project Plan Process and Results	93
13	Appendix	D: LIDAC identification process	97
14	Appendix	E: LIDAC census block groups for the Chicago MSA	100
15	Appendix	F: Climate Risk and Vulnerability Assessment for Chicago Region	169
16	Appendix	G: Plans Reviewed in the Creation of the Chicago MSA PCAP	

Chicago Metropolitan Statistical Area Priority Climate Action Plan

The purpose of this Priority Climate Action Plan is to articulate plans for strategic climate action that will support equitable investment in policies, practices, and technologies that reduce pollutant emissions, create high-quality jobs, spur economic growth, and enhance the quality of life in the greater Chicago Metropolitan Statistical Area.

The intent of the Priority Climate Action Plan (PCAP) is to enable jurisdictions throughout the Chicago Metropolitan Statistical Area (MSA) to seek federal funding under the United States Environmental Protection Agency's (EPA) Climate Pollution Reduction Grants (CPRG) Implementation Grant General Competition and other funding streams, as applicable to implement Priority Green House Gas (GHG) Reduction Strategies. The strategies contained herein should be construed as broadly available to any entity within the Chicago MSA eligible to receive funding.

This project has been funded wholly or in part by the United States Environmental Protection Agency (EPA) under assistance agreement *00E03470* to the Metropolitan Mayors Caucus. The contents of this document do not necessarily reflect the views and policies of the EPA, nor does the EPA endorse trade names or recommend the use of commercial products mentioned in this document.

Acknowledgements

The Metropolitan Mayors Caucus gratefully acknowledges the generous, expert support of the Chicago Metropolitan Agency for Planning (CMAP) in developing the Priority Climate Action Plan (PCAP). CMAP demonstrated exceptional commitment to the quality and success of the PCAP and related CPRG products and activities.

We appreciate the partnership of the Northwestern Indiana Regional Planning Commission (NIRPC) in developing the PCAP. Both CMAP and NIRPC will continue to collaborate to complete the Comprehensive Climate Action Plan (CCAP) in June 2025. The Metropolitan Mayors Caucus also enjoyed collaboration with the Southeastern Wisconsin Regional Planning Commission (SEWRPC), the City of Chicago, City of Aurora, City of Geneva, DuPage County, the Illinois Environmental Protection Agency, Kane County, City of Kenosha, City of Naperville, and Village of Oak Park to plan the PCAP process. The Kankakee-Iroquois Regional Planning Commission (KIRPC) and State of Wisconsin expressed their support and willingness to collaborate. Many other local government agencies, private sector and civic organizations were engaged in and supportive of the PCAP process as described in the Stakeholder Engagement *Section 1.3.3*.

The Metropolitan Mayors Caucus is deeply grateful to the EPA who has made this extraordinary opportunity for coordinated, strategic, and inclusive climate action available, not just to the region, but to states, metropolitan regions, tribes, and territories across the United States. The EPA made a dazzling number of rich technical resources, tools and support available to all organizations developing PCAPs for the Planning Phase of the Climate Pollution Reduction Grant Program. Without the guidance and deep technical expertise of the EPA both nationally and within EPA's Region 5, the Priority Climate Action Plan would not have been possible in this short amount of time. Efforts made by EPA's CPRG team to train and support public leaders at state, local, and tribal levels will have an enduring impact on our nation's ability to meaningfully address the climate crisis while supporting thriving communities.

Chicago MSA PCAP 3/1/2024

The Metropolitan Mayors Caucus (Caucus), a non-profit regional council of governments inclusive of 275 municipalities in northeastern Illinois, is the lead agency for the Climate Pollution Reduction Planning Grant for the Chicago MSA. The Executive Board of the Caucus is strongly supportive of climate action and the Caucus' leadership role in regional climate action, especially under the leadership of Executive Board Chairman and Environment Committee Chairman Kevin Burns, Mayor of the City of Geneva.

The Caucus' membership has demonstrated both commitments and effective action as adopters of the Greenest Region Compact, the Caucus' sustainability pledge and program endorsed by 153+ municipalities, 5 counties and 10 sub-regional councils of government. Such comprehensive climate action planning, as required for the PCAP, would not be possible without their support and engagement.

Finally, we appreciate the National Oceanic and Atmospheric Administration (NOAA) who contributed substantially to prepare the Metropolitan Mayors Caucus and member municipalities to plan for strategic climate action. Because of NOAA's assistance in preparing the 2021 Climate Action Plan for the Chicago region, we are ready and able to lead the CPRG planning work for our region.

Metropolitan Mayors Caucus (Caucus)

Lead Author: Edith Makra, Director of Environmental Initiatives, Metropolitan Mayors Caucus

Contributors:

Kevin Burns, Mayor, City of Geneva, Illinois, and Executive Board Chairman and Environment Committee Chairman, Metropolitan Mayors Caucus

Neil James, Executive Director

Cheryl Scott, Sustainability Specialist

Chicago Metropolitan Agency for Planning (CMAP)

CPRG Project Lead: Nora Beck, Principal Policy Analyst | Regional Policy and Implementation

Contributors:

Jesse Altman, Analyst | Regional Policy and Implementation

Bill Barnes, Deputy | Regional Policy and Implementation

Karly Cazzato, Associate Analyst | Research, Analysis & Programming

Craig Heither, Principal Travel Modeler | Research, Analysis & Programming

Mitch Hirst, Analyst | Research, Analysis & Programming

Jared Patton, Senior Planner | Regional Policy and Implementation

Nikolas Merten, Associate Analyst | Regional Policy and Implementation

Noah Harris, Analyst | Regional Policy and Implementation

Hannah Shumway, Intern | Regional Policy and Implementation

Northwestern Indiana Regional Planning Commission (NIRPC)

Contributors:

Kathy Luther, Director of Environmental Programs Jennifer Birchfield, Natural Resources Planner

Definitions and Acronyms

- ADA The Americans with Disabilities Act of 1990
- BIL Bipartisan Infrastructure Law
- **C2ES** Center for Climate and Energy Solutions
- CAA Community Action Agency
- **CAP** Climate Action Plan
- **CCAP** Comprehensive Climate Action Plan
- **CEJA** Illinois Climate and Equitable Jobs Act
- **CEJST** Climate and Economic Justice Screening Tool
- CH4 methane
- CMAP Chicago Metropolitan Agency for Planning
- CO2 carbon dioxide
- CO2e carbon dioxide equivalent
- **CPRG** Climate Pollution Reduction Grants
- CURB Climate Action for Urban Sustainability tool
- DACs disadvantaged communities
- DER distributed energy resources
- **DOE** Department of Energy
- DOE Communities LEAP Department of Energy Communities Local Energy Action Program
- eGRID U.S. EPA Emissions & Generation Resource Integrated Database
- EJScreen U.S. EPA Environmental Justice Screening and Mapping Tool
- EPA U.S. Environmental Protection Agency
- eTRU Electric Transport Refrigeration Unit

- EV electric vehicle
- EVCS electric vehicle charging station
- FLIGHT U.S. EPA Facility Level Information on GreenHouse gases Tool
- GHG Greenhouse gas
- GHGRP U.S. EPA Greenhouse Gas Reporting Program
- GPC Global Protocol for Community-Scale Greenhouse Gas Emission Inventories
- **GRC** Greenest Region Compact
- **GWP** Global Warming Potential
- HFC hydrofluorocarbons
- HUD United States Department of Housing and Urban Development
- ICC International Code Council
- IEPA Illinois Environmental Protection Agency
- IL Illinois
- IN Indiana
- IPCC Intergovernmental Panel on Climate Change
- **IRA** Inflation Reduction Act
- IREC Interstate Renewable Energy Council
- ITS intelligent transportation system
- KIRPC Kankakee-Iroquois Regional Planning Commission
- LGGIT U.S. EPA's Local Greenhouse Gas Inventory Tool
- LIDACs Low Income / Disadvantaged Communities
- MEEA Midwest Energy Efficiency Alliance
- MMTCO2e million metric tons of carbon dioxide equivalent
- MSA metropolitan statistical areas as defined by the U.S. Census 2020 MSA population.
- MTC02e metric tons of carbon dioxide equivalent
- MWRD Metropolitan Water Reclamation District of Greater Chicago
- **NEI** National Emissions Inventory
- NEVI National Electric Vehicle Infrastructure formula program
- NIRPC Northwestern Indiana Regional Planning Commission
- NOAA National Oceanic and Atmospheric Administration

- **NREL** National Renewable Energy Laboratory
- **PACE** property assessed clean energy
- PCAP Priority Climate Action Plan
- **POTW** publicly owned treatment works
- R&D research and development
- RE renewable energy
- Ref reference
- **RFCW** RFC West, an eGRID subregion
- RMI Rocky Mountain Institute
- **RTA** Regional Transportation Authority
- SEWRPC Southeastern Wisconsin Regional Planning Commission
- **SF6** sulfur hexafluoride
- **SIT** U.S. EPA State Inventory Tool
- SLOPE State and Local Planning for Energy platform
- **SOV** single-occupancy vehicle
- **TPIS** Truck Parking Information System
- USDA United States Department of Agriculture
- **USDOT** United States Department of Transportation
- VMT Vehicle Miles Traveled
- WI Wisconsin
- Yrs years

1 Introduction

1.1 CPRG overview

As a part of the Inflation Reduction Act, the U.S. Environmental Protection Agency (EPA) is implementing the historic the <u>Climate Pollution Reduction Grant program</u> in partnership with states, local governments, territories and tribes to ensure the health and well-being of Americans and to support global initiatives to mitigate climate impacts through the reduction of greenhouse gas emissions and other harmful air pollutants.

1.1.1 Phase 1 – Planning

The <u>Climate Pollution Reduction Grant program</u> is providing funds to 46 states and some 67 of the nation's largest MSAs to develop and implement plans for achieving CPRG objectives. The Metropolitan Mayors Caucus was awarded a \$1 million Planning Grant to complete the planning requirements of CPRG for the Chicago MSA over a four-year period beginning in 2023. This PCAP is the first of these CPRG planning products.

The State of Illinois was awarded a \$3 million Planning Grant to complete the planning requirements of CPRG for the State over a similar timeframe. The State of Wisconsin and the State of Indiana also accepted CPRG Planning Grants. Successful completion of these complementary regional and state PCAPs allows jurisdictions covered by these plans to be eligible to compete for grants through the \$4.6 billion CPRG Implementation Grant Program.

Each state and MSA participating in the CPRG Planning grant program must complete these three climate planning products. The Metropolitan Mayors Caucus (Caucus) is collaborating with CMAP and NIRPC to produce these elements for the Chicago MSA following this timeline:

1. Priority Climate Action Plan (PCAP), due March 1, 2024

2. Comprehensive Climate Action Plan (CCAP), due June 2025

3. Status Report, due June 2027

The Caucus has led in the production of this document, the PCAP.

CMAP will lead in developing the CCAP. This narrative report will provide an overview of the region's significant GHG sources/sinks and sectors, establish near-term and long-term GHG emission reduction goals, and provide strategies and measures that address the highest priority sectors to meet those goals. The CCAP will include a comprehensive inventory of emissions and sinks for the following sectors: industry, electricity generation and use, transportation, commercial and residential buildings, agriculture, natural and working lands, and waste and materials management.

CMAP will collaborate with the Caucus to produce the Status Report.

1.1.2 Phase 2 – Implementation

The Priority GHG Reduction Strategies identified by the PCAP guide the eligibility of proposed projects for competitive CPRG Implementation funding, subject to review by the EPA. Any eligible jurisdiction within the Chicago MSA may apply for CPRG Implementation funding for projects that address Priority GHG Reduction Strategies in either this PCAP, or their respective state plan – Illinois, Indiana, or Wisconsin.

The U.S. EPA Notice of Funding Opportunity for CPRG Implementation Grants describes eligible applicants: states, municipalities, air pollution control agencies, tribes, territories, and groups thereof. Lead organizations that directly received a CPRG planning grant, including the Caucus are eligible to apply for an implementation grant.

1.2 PCAP Overview

This PCAP for the Chicago MSA includes these elements:

- Greenhouse Gas (GHG) Inventory a comprehensive accounting of greenhouse gas emission sources and sinks
- **Priority GHG Reduction Strategies** a subset of the Complete List of GHG Reduction Strategies for which specific measures and their GHG reduction impacts are quantified. These Strategies are likely to be implemented with the 5-year CPRG period.
- Low Income / Disadvantaged Communities (LIDAC) Benefits Analysis identification of low income and disadvantaged communities and analyses of impacts from implementation of GHG Reduction Strategies
- Intersection with Other Funding Availability
- Review of Authority to Implement Each GHG Reduction Strategy
- Next steps includes a full list of GHG Reduction Strategies for long term implementation.

In addition, the 2021 <u>Climate Action Plan for the Chicago Region</u> provides additional elements that may inform policymakers and stakeholders. As this CAP was completed prior to CPRG, these elements are not inclusive of the entire Chicago MSA but are helpful for reference and for understanding the GHG Reduction Strategies included in this PCAP.

- GHG emission projections
- GHG reduction targets

Additional information on the PCAP elements can be found in EPA's <u>CPRG: Formula Grants for Planning</u>, <u>Program Guidance for States</u>, <u>Municipalities</u>, and <u>Air Control Agencies</u>.

Additionally, supplemental information follows in Appendices A-G.

1.3 Approach to Developing the PCAP

The CPRG program offers the greater Chicago region the opportunity to build upon fundamental climate action planning while extending the breadth and scope of previous plans for greater emissions reduction impacts and greater benefits to communities. Engagement of diverse jurisdictions and stakeholders across the state lines sparked innovation and collaboration to significantly reduce GHG emissions. The diversity of community types and size across the 14 counties stretched our thinking about climate action at this scale.

The CPRG Implementation grants offer an enormous opportunity to implement priority actions at an expansive scale. This prospect greatly influenced the development of the PCAP and the selection of Priority GHG Emission Strategies. The rapid timeline for CPRG planning reflects the urgency of the climate crisis and underscores the imperative of quick, coordinated action to mitigate climate change.

1.3.1 Existing Climate Action Plans

To create the Chicago MSA PCAP, the team drew on existing climate action plans prepared for localities in the MSA.

The Metropolitan Mayors Caucus (Caucus) developed the first <u>Climate Action Plan for the Chicago</u> <u>Region</u> (CAP) with assistance from the National Oceanic and Atmospheric Administration (NOAA) in 2021. The European Union and the Global Covenant of Mayors mentored the Caucus to create the plan as one of 3 model regional climate action plans in the United States. The CAP was recognized with several awards including a Climate Leadership Award through the Center for Climate and Energy Solutions (C2ES), awards from American Planning Association at both the national and state level, an award from the American Society of Landscape Architects, Illinois Chapter, as well as one from the Morton Arboretum.

The Climate Action Plan for the Chicago Region was based on the 2015 GHG inventory conducted by the Chicago Metropolitan Agency for Planning (CMAP) for the 7-county metropolitan region. The CAP addresses equity, mitigation, and adaptation. It identifies 8 climate mitigation (GHG Reduction) objectives and 42 GHG reduction strategies. These objectives form the framework for the strategies of the PCAP. All CAP strategies are included in the PCAP, and some were split into more precise strategies to suit further planning and regional implementation approaches.

Uniquely, the 2021 CAP was tailored for municipal action to serve the municipal members of the Metropolitan Mayors Caucus who embraced regional leadership on climate action early. To be more expansive in GHG reduction and to be more inclusive of regional jurisdictions and stakeholders, the GHG reduction strategies for the PCAP plans for engagement of transit agencies, water utilities and other local and regional governments.

Many high-quality climate action plans produced by constituent communities provided important inputs into the PCAP. The City of Chicago crafted its 2022 <u>Chicago Climate Action Plan</u> with a vision of justice and equity. The Chicago plan is based on its 2017 GHG inventory and developed GHG reduction strategies around 5 pillars. The recent and robust stakeholder engagement of the Chicago plan informs the PCAP. Other municipal climate action plans that inform the PCAP include the Village of Oak Park's <u>Climate Ready Oak Park</u>, the Village of <u>Northbrook's Climate Action Plan</u>. Kane County has completed the draft <u>Kane County Climate Action Plan</u> at the time of this publication.

Northwestern Indiana Regional Planning Commission (NIRPC) created the <u>Northwest Indiana Climate</u> <u>Action Framework</u> with GHG reduction strategies in 7 focus areas. The plan is based on their 2017 GHG inventory and provides critical insights for the PCAP to serves NW Indiana given their unique industrial economy. NIRPC's draft long-range plan, NWI 2050+, provides an emissions profile and recognizes the need to reduce emissions and prepare for climate change.

The Chicago Metropolitan Agency for Planning (CMAP) has done fundamental work to prepare for climate action planning including GHG inventories every 5 years since 2010. The most recent 2019 Chicago Regional GHG inventory also led to local emissions profiles that enable local climate planning. Recognizing the scale and urgency of climate change, ON TO 2050, the region's long-range plan adopted in 2018 and updated in 2022, establishes goals and strategies for the CMAP region to both intensify mitigation efforts and prepare for the current and projected impacts of climate change. CMAP's Strategic Direction (2023) defines the agency's five-year plan to advance the recommendations of ON

TO 2050. One of its three goals is "a region that takes action to mitigate and adapt to the impacts of climate change and preserve high-quality water resources."

1.3.2 PCAP Team

The Metropolitan Mayors Caucus has led the preparation of the Priority Climate Action Plan for the Chicago MSA.

CMAP has contributed invaluable assistance in the completion of the greenhouse gas inventory for the Chicago MSA on which priority GHG reduction strategies are based. CMAP also contributed the Low Income and Disadvantaged Communities Analysis portion of this PCAP and identified additional regional GHG reduction strategies to improve upon the Climate Action Plan for the Chicago Region. CMAP quantified many of the Priority GHG Reduction Strategies. CMAP also completed the Quality Assurance Project Plan (QAPP) as required by the CPRG program.

NIRPC contributed GHG data and guided in selection of priority strategies. Illinois Environmental Protection Agency coordinated in the development of the PCAP and covers important Priority GHG Reduction Strategies not included in this PCAP.

1.3.3 Stakeholder Engagement

Robust stakeholder engagement in the recent creation of the Climate Action Plan for the Chicago Region, the 2022 Chicago Climate Action Plan, Northwest Indiana Climate Action Framework, and other climate planning referenced above provided a solid foundation for the development of the PCAP. The Climate Action Plan for the Chicago Region engaged 270 people from 175 organizations including 53 diverse municipalities in the Chicago region, of which 16 are environmental justice communities (LIDAC). The City of Chicago gathered input from 2,100 residents and Kane County has gathered input from 1,100 residents to create their respective climate action plans.

The Caucus utilized the Environment Committee, comprised of municipal representatives and allies from throughout the region, to educate and solicit input about the CPRG program and PCAP development. Members of the Environment Committee include mayors, other elected officials, municipal staff, citizen commissioners and allies from other branches of government and the civic community. Low income and disadvantaged communities throughout the region are well-represented on the Environment Committee. Stakeholder engagement to develop the PCAP are summarized here:

May 16, 2023, the <u>Environment Committee of the Metropolitan Mayors Caucus</u> held a meeting to discuss CPRG. More than 50 municipal officials and civic leaders attended the online meeting.

May 23, 2023, CMAP hosted a meeting of the County Chairpersons representing the 7-county region. CPRG information was presented and discussed.

December 6, 2023, CMAP announced that Climate Action Townhall through its <u>newsletter</u>, received by 24,000 people, and created an online survey to solicit implementation project ideas and foster collaboration.

December 18, 2023, CMAP and the Caucus jointly hosted the <u>Climate Action Townhall</u> with Illinois EPA and NIRPC participating as presenters. One-hundred and sixty people from throughout the MSA attended.

January 16, 2024, the Environment Committee of the Metropolitan Mayors Caucus held a meeting to help prioritize GHG reduction strategies and hear presentations from likely applicants for CPRG

Implementation funding. More than 60 stakeholders attended and gave input into the development of 5 potential implementation projects. The online engagement tool, *Mentimeter*, was used to solicit feedback and rank project ideas.

February 24, 2024, The Caucus used an online survey to solicit stakeholder feedback on the draft Priority GHG Reduction Strategies. Seventeen respondents generally concurred with draft strategies, and a few made helpful comments.

A sign-on letter requesting that an e-bike incentive program be covered as a Priority GHG Reduction Strategy was received by CMAP, the Caucus and the City of Chicago. This letter was signed by:

350 Chicago **Active Transportation Alliance Better Streets Chicago** Chicago Cycling Club Chicago Family Biking Chicago, Bike Grid Now! Climate Reality Project: Chicago Metro Chapter **Elgin Community Bikes** Environmental Law & Policy Center Equiticity Friends of Cycling in Elk Grove Go Green Illinois Light Up Lawndale Little Village Environmental Justice Organization Major Taylor Cycling Club of Chicago McHenry County Bicycle Advocates McHenry County Century Ride Metropolitan Planning Council Natural Resources Defense Council Northwest Center **Respiratory Health Association Ride Illinois** Sierra Club Illinois Chapter West Town Bikes NFP

The very short PCAP timeline and the large scale of the PCAP project prohibited more extensive and inperson stakeholder engagement across the Chicago MSA. Stakeholder engagement will continue and will deepen over the next CCAP planning phase of CPRG.

1.3.4 Identifying and Quantifying GHG Reduction Strategies

The 2021 Climate Action Plan for the Chicago Region compiled GHG reduction strategies (called Mitigation Strategies). Forty-two strategies were identified and categorized into eight Mitigation (GHG Reduction) Objectives based on these inputs:

• Analysis of 31 local sustainability plans and 25 municipal climate action plans from the United States cities and Europe.

- Use of the <u>CURB</u> (Climate Action for Urban Sustainability) tool to categorize and evaluate actions.
- Input from 270 stakeholders representing 175 organizations.

Mitigation strategies in the 2021 CAP were tailored for municipal action to serve the municipal members of the Metropolitan Mayors Caucus who embraced leadership on climate action early.

Strategies (renamed GHG Reduction Strategies) compiled for the PCAP are more inclusive of regional jurisdictions and more expansive in GHG reduction potential. While the short timeframe prohibited thorough stakeholder engagement, input and ideas were solicited as described above and incorporated. CMAP also conducted its own review of 20 climate action and sustainability plans including 9 not reviewed for the CAP. CMAP staff also convened in-house subject matter experts to evaluate strategies and identify new ones. Notable additions include strategies related to transit, vehicle traffic, freight, and industry.

The Complete List of GHG Reduction Strategies contains 67 strategies organized into 8 GHG Reduction Objectives. These objectives are:

- 1. Demonstrate Leadership
- 2. Decarbonize Energy Sources
- 3. Optimize Building Energy
- 4. Implement Clean Energy Policies
- 5. Decarbonize Transportation
- 6. Reduce Vehicle Miles Traveled
- 7. Manage Water and Waste Sustainably
- 8. Sustain Ecosystems to Sequester Carbon

Priority Strategies are categorized in context of their overarching Objective and highlighted in the Complete List of GHG Reduction Strategies (in blue). See Complete List of GHG Reduction Strategies *Section 6.*

Many additional GHG Reduction Strategies are offered as guidance to all stakeholders in the Chicago MSA for planning and implementation beyond the scope of PCAP. These additional strategies will serve as a foundation for further planning, stakeholder engagement and refinement in the CCAP.

Priority GHG Reduction Strategies are exclusively selected as vehicles to allow eligible organizations within the Chicago MSA to apply for CPRG Implementation Grants. CMAP led stakeholder engagement to solicit CPRG Implementation project ideas as the foundation for the selection of Priority GHG Reduction Strategies. An online survey was widely distributed beginning December 6, 2023, and remained open through the end of January 2024. A total of 25 responses were received. Follow up conversations with these stakeholders allowed scoping of viable project ideas and the forming of coalitions to champion Priority GHG Reduction Strategies.

Project ideas were evaluated for consistency with CPRG program priorities. These criteria included subjective evaluation of:

- Benefits to low income and disadvantaged communities (LIDAC)
- Feasible implementation in 5 years
- High or highly effective GHG reduction potential
- Innovation and potential for transformation

• Funding gaps or funding insufficiency prohibiting the project from advancing without CPRG funding

Both CMAP and the Caucus met with key constituents to brainstorm to conceive CPRG implementation projects and guide in the identification of enabling priority reduction strategies. These include:

- A coalition of counties and municipalities led by Kane County
- American Lung Association
- Chicago-Area Wastewater Utility Consortium led by Wheaton Sanitary District
- City of Chicago
- Chicago Public Schools, Chicago Park District, Chicago Housing Authority
- ComEd
- Cook County
- County transportation planners
- Drive Clean Indiana
- Governors State University
- Illinois Brotherhood of Electrical Workers Local 701
- Illinois Alliance for Clean Transportation
- Illinois Landscape Contractors Association
- Lake County
- Lake Michigan Air Directors Consortium (LADCO)
- Metropolitan Planning Council
- Metra commuter rail
- Regional Transportation Authority
- Sub-regional councils of government

In addition, advocates representing electric micromobility, food waste, and circular economy interests contributed ideas for priority reduction strategies.

Strategies from the draft Complete list of GHG Reduction Strategies were refined and adapted to sufficiently address the projects that constituent groups intend to propose for CPRG Implementation funding. With further coordination and another online survey (February 24, 2024) the 13 Priority GHG Reduction Strategies were finalized. These are presented in *Section 5,* Priority GHG Reduction Strategies.

Many GHG reduction strategies of great importance to the region are not named "Priority GHG Reduction Strategies" in this PCAP. To clarify, Priority GHG Reduction Strategies included in the PCAP are so defined because they will enable projects that meet CPRG criteria to compete for CPRG implementation funding.

Important strategies to electrifying transportation through policy and investment are not included because there are several other robust funding opportunities available beyond CPRF. These include NEVI funds from the U.S. Joint Office of Energy and Transportation, NEVI funds through federal and State grants, vehicle rebates from the State of Illinois, and rebates through ComEd's Beneficial Electrification program. Important investments in active transportation to reduce vehicle miles traveled are not included because they cannot be completed in the CPRG timeframe and cannot demonstrate high GHG reductions through mode shift. Building energy policies are a regional priority but are not included as priorities because other sources of federal funding through Department of Energy are available and in

fact, have been awarded to the Chicago area. Any eligible jurisdiction within the Chicago MSA may apply for CPRG grant funds to address Priority Strategies that alternatively appear in their respective state PCAPs - Illinois, Indiana, or Wisconsin.

Other strategies are included as Priority GHG Reduction Strategies at the request of project champions, despite relatively modest GHG reduction potential, or access to other funding sources. Helping low- and moderate-income households access energy efficiency and electrification benefits is one of these championed project ideas. Therefore, BE1 and BE2 strategies for residential energy efficiency and residential electrification were elevated as priorities. Similarly, constituents expressed strong support for an e-bike rebate program proposal. Therefore, VMT11 for electric micromobility systems was elevated as a priority.

Each of the 13 Priority GHG Reduction Strategies were analyzed and quantified for CPRG program compliance. At least one representative *measure* was chosen for each Priority Strategy and that measure was quantified using tools and models available from U.S. EPA, the National Renewable Energy Laboratory (NREL), the Rocky Mountain Institute (RMI), and others. ComEd used its own validated modeling tool for energy efficiency and electrification strategies. CMAP conducted thorough quantification exercises for nine of the priority measures. Organizations championing future CPRG projects conducted additional quantification exercises. Quantification results are presented in *Section 5* and full methodology is described in *Appendix A*.

The key purpose of the quantification exercise is to demonstrate GHG reduction potential and validate the selection of these thirteen Priority GHG Reduction Strategies.

1.4 Scope of the PCAP

This PCAP serves the entire Chicago-Naperville-Elgin, IL-WI-IN MSA, including Illinois counties Cook, DeKalb, DuPage, Grundy, Kane, Kendall, Lake, McHenry and Will; Indiana counties of Lake, Porter, Jasper, and Newton; and the Wisconsin county of Kenosha. It has a total population of 9,618,502. The Chicago MSA is the third largest among 67 MSA's eligible to receive a Phase 1 Planning Grant through the CPRG program.

The Priority Actions are guided by the needs of the constituents and capability of jurisdictions within the region to reduce emissions from these sectors:

- 1. transportation
- 2. residential electricity and natural gas usage
- 3. commercial, (electricity and natural gas usage)
- 4. industrial (electricity usage, natural gas usage
- 5. industrial processes
- 6. energy generation agriculture
- 7. waste
- 8. wastewater

The PCAP considers existing authorities and capacity of the jurisdictions eligible for CPRG Implementation funds including municipalities, counties, transit agencies, water utilities, and groups thereof and the metropolitan planning organization to implement priority climate actions, often in partnership with others in the private and civic sectors. Each Strategy is paired with both "Key Implementers" and "Authority to Implement" as a planning aid. The Chicago MSA PCAP is coordinated with relevant State PCAPs, references state authority and implementation partnership but does not identify strategies for state implementation.

Greenhouse gas reduction strategies include a range of actions that can be undertaken by local and regional government agencies including policies, programs, and capital projects. Strategies identify needs for collaboration and partnership across jurisdictions and with the private sector.

2 Greenhouse Gas (GHG) Inventory

To inform the development of the Chicago MSA PCAP, CMAP completed a greenhouse gas (GHG) emissions inventory for the 14 counties in the Chicago MSA (*2020 Chicago MSA inventory*).

This section provides an overview of the methodology used to develop the inventory and details 2020 GHG emissions by both sector and relevant subsectors, reports total and per-capita emissions by county, and reflects upon previous GHG inventories and trends.

The process by which emission sources and sinks are identified and quantified within the planning geography is critical to the climate action planning process and will help the region identify and assess GHG reduction measures, conduct benefit analyses, and both set and track progress toward its emission reduction targets. The GHG inventory was developed in accordance with U.S. Environmental Protection Agency (EPA) guidance provided via the Climate Pollution Reduction Grant program, as reflected in the *Appendix C.*

2.1.1 Methodology - Underlying data

The 2020 Chicago MSA Greenhouse Gas Inventory includes 2020 county-level emissions data for three major GHGs: carbon dioxide, methane, and nitrous oxide. CMAP chose the year 2020 because it was the most recent year available across the geography.¹ CMAP also reviewed past inventories for northeastern Illinois (2019) and northwestern Indiana (2017).

The 2020 Chicago MSA Greenhouse Gas Inventory covers emissions from eight sectors: transportation residential electricity and natural gas usage), commercial, (electricity and natural gas usage), industrial (electricity usage, natural gas usage, and emissions from industrial processes), energy generation, agriculture, waste, and wastewater. It also estimates carbon dioxide equivalent (CO2e) removed due to

¹ Pandemic-related changes in transportation and energy consumption make 2020 an anomalous year for some datasets, but it is still a viable year for this analysis. The inventory is built using modeled and reported data from various time scales and geographies, which reduces the impacts of short-term fluctuations, such as those experienced in 2020. The inventory results are comparable to past efforts to study emissions in the region.

carbon sequestration of trees and forestlands within the region.² Table 1 lists the GHG inventory sectors and their data sources.

Sector	Source
Transportation	National Emissions Inventory (NEI)
Residential: Natural gas	DOE/NREL SLOPE Tool
Residential: Electricity	DOE/NREL SLOPE Tool and RFCW eGRID rates
Commercial: Natural gas	DOE/NREL SLOPE Tool and RFCW eGRID rates
Commercial: Electricity	DOE/NREL SLOPE Tool
Industrial: Natural gas	DOE/NREL SLOPE Tool
Industrial: Electricity	DOE/NREL SLOPE Tool
Industrial: Processes	EPA Greenhouse Gas Reporting Program (EPA GHGRP)
Energy generation	EPA Greenhouse Gas Reporting Program (EPA GHGRP)
Agriculture	EPA State Inventory Tool (SIT) scaled with USDA cropland acreage
Waste	EPA FLIGHT Tool/EPA GHGRP
Wastewater	MWRD data scaled with U.S. Census population data

Source: CMAP, 2024.

2.2 Emissions calculation by sector

To calculate emissions for each sector, CMAP used the U.S. EPA's Local Greenhouse Gas Inventory Tool (LGGIT) for community-wide inventories, following guidance outlined in the U.S. EPA Climate Pollution Reduction Grant Program.³

Commercial, residential, and industry sector stationary energy emissions include emissions resulting from grid-supplied electricity and natural gas used for heat, steam, cooling, and other processes. Calculations for these emissions used data on electricity and natural gas fuel consumption supplied by the Department of Energy (DOE) and National Renewable Energy Laboratory (NREL)SLOPE tool,⁴ as well as the U.S. EPA Greenhouse Gas Reporting Program (GHGRP).⁵ Emissions from electricity used in the region were calculated using the U.S. EPA Emissions and Generation Resource Integrated Database (eGRID),⁶ which discloses environmental characteristics of electricity generated in the multi-state electrical transmission region.

² This inventory does not include emissions from interregional aviation. Additional carbon sinks will be explored during the CCAP.

³ U.S. EPA, 2023, Climate Pollution Reduction Grant Program, GHG Inventory guidance,

https://www.epa.gov/inflation-reduction-act/cprg-tools-and-technical-assistance-greenhouse-gas-inventory ⁴ SLOPE, or State and Local Planning for Energy platform, is available at https://www.energy.gov/scep/slsc/stateand-local-planning-energy-slope-platform

⁵ The U.S. EPA GHGRP requires reporting of greenhouse gas data and other relevant information from large GHG emission sources, fuel and industrial gas suppliers, and carbon dioxide injection sites in the United States. See https://www.epa.gov/ghgreporting

⁶ eGrid is available at https://www.epa.gov/egrid

The Chicago MSA is part of the RFCW eGRID subregion which extends into Indiana, Ohio, and West Virginia.⁷ In 2021, electricity in this eGRID was produced by several different sources: natural gas (27.7 percent), coal (35.6 percent), and nuclear (28.5 percent).⁸ Compared to the rest of the nation, the RFCW eGRID's fuel mix includes significantly larger contributions from both nuclear and coal, and less in natural gas. Notably, wind, solar, and geothermal represent a much smaller portion of the region's fuel mix (5.5 percent combined) than the national average (12.4 percent). Methods for analyzing different portions of the MSA region, such as the smaller ComEd region, accounting for local variations in energy generation, were not available for the entire region at the time the inventory was conducted.

Emissions for the transportation sector were calculated using results from the National Emissions Inventory (NEI),⁹ and captured mobile sources, including on-road emissions, non-road equipment, locomotives, and commercial marine vessels.

Emissions from the waste sector were calculated using the U.S. EPA Facility Level Information on Greenhouse Gases Tool (FLIGHT),¹⁰ a publicly accessible database that reports on large GHG emissions sources. The FLIGHT tool reports carbon dioxide, methane, and nitrous oxide emissions in CO2e using the Global Warming Potential Values,¹¹ which allows for comparisons of global warming impacts of different gases. These values were informed by a report by the Intergovernmental Panel on Climate Change (IPCC). The Chicago MSA Greenhouse Gas Inventory uses the conversion values from the IPCC's fifth assessment report. However, the FLIGHT tool uses values from the IPCC fourth assessment report, which differ from the conversion values used in this inventory. As a result, these values were converted to raw emissions values and then into CO2e using the fifth assessment report rates for this inventory.

Emissions associated with biogas emissions from wastewater treatment facilities within the MSA region were calculated and scaled based on data provided by the Metropolitan Water Reclamation District (MWRD). This data was utilized to calculate kilograms of methane and nitrous oxide per person for the CMAP region. Since data from all wastewater treatment plants in the region were not available, CMAP used MWRD methane and nitrous oxide per-person rates to scale wastewater sector biogas emissions to the MSA level based on county population totals from the 2020 U.S. Census.

Agriculture emissions from fertilizer consumption are scaled from the agriculture module of the U.S. EPA State Inventory Tool (SIT).¹² This dataset lists total nitrogen consumption in metric tons by state. After state-level data was calculated, it was downscaled to the county level using the proportion of state cropland acreage found within each of the counties in the MSA region. Total cropland acres in each relevant county and state were downloaded from the U.S. Department of Agriculture (USDA)'s QuickStats database.¹³

¹⁰ FLIGHT is available at https://ghgdata.epa.gov/ghgp/main.do?site_preference=normal

⁷ The 27 eGRID subregions in the U.S. are defined by EPA using data from the Energy Information Administration (EIA) and the North American Electric Reliability Corporation (NERC). The subregions are defined to limit the amount of imports and exports across regions in order to best represent the electricity used in each of the subregions.

⁸ U.S. EPA eGRID 2021 Power Profiler for RFCW. Accessed on January 25, 2024: https://www.epa.gov/egrid/powerprofiler#/RFCW

⁹ NEI is available at https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei

 $^{^{\}rm 11}$ More information about Global Warming Potential Values can be found at

https://www.epa.gov/ghgemissions/understanding-global-warming-potentials

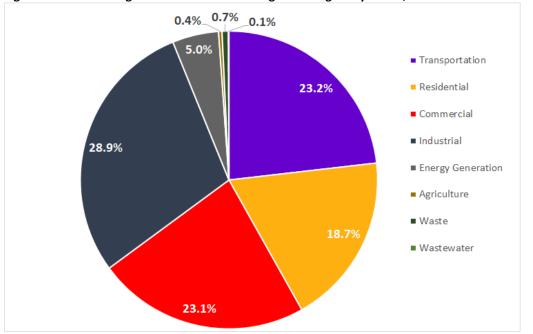
¹² SIT is available at https://www.epa.gov/statelocalenergy/state-inventory-and-projection-tool

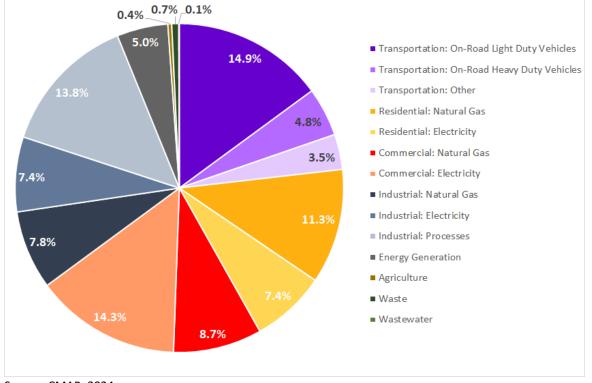
¹³ Crop acreage by state and county can be found at https://quickstats.nass.usda.gov/

All emissions within the inventory are expressed in million metric tons of carbon dioxide equivalent (MMTCO2e). *Appendix C* provides more information on the methodology used to convert emissions across the various sectors included in this inventory into this standard format.

2.3 2020 Chicago MSA Greenhouse Gas Inventory

In 2020, the 14 counties in the Chicago MSA produced approximately 160 million metric tons of carbon dioxide equivalent (MMTCO2e) of GHG emissions. Figure 1 provides the greenhouse gas emissions inventory for the Chicago MSA region, broken down by the following sectors: transportation, residential buildings, commercial buildings, industry, energy generation, agriculture, waste, and wastewater. Figure 2 provides the same information, broken down by subsector and highlights the relative contributions of electricity and natural gas across the building sectors. Figure 3 rank orders the subsectors based on greatest to least share of the total inventory.




Figure 1. Greenhouse gas emissions in the Chicago MSA region by sector, 2020

Source: CMAP, 2024.

The MSA's GHG inventory shows that two prominent emission sectors — industry and transportation — comprise over 50 percent of total emissions. This is likely due to the region's important role as national transportation and manufacturing hubs. The Chicago region is home to 10 interstate highways, 6 Class I railroads, one of the nation's busiest air-cargo hubs, and the only maritime connection between the St. Lawrence Seaway and the Mississippi River system. These transportation resources directly produce greenhouse gas emissions and make the region an ideal location for industry. The Chicago region's current and historical role as manufacturing and transportation centers, combined with its dependance on fossil fuels, make the region a major contributor to the United States' total GHG output.

Approximately 23 percent of regional emissions come from transportation. On-road transportation, which includes public and private cars, buses, and trucks, is overwhelmingly the largest source of transportation emissions (85 percent) and is the single largest subsector overall. Approximately 64 percent of transportation emissions come from light duty vehicles, such as private cars, SUVs, and small

trucks. An additional 21 percent of transportation emissions come from heavy duty vehicles such as large trucks. See Figure 2 for more detail. Other transportation sources include non-road equipment, locomotives, and commercial marine vessels.

Source: CMAP, 2024.

Industrial emissions from electricity and natural gas use and processes account for 28.9 percent of the MSA's total emissions. Within industry, natural gas use accounts for approximately 27 percent and electricity use accounts for about 25 percent of GHG emissions. Industrial processes account for approximately 48 percent of all industry sector GHG emissions. Approximately 81 percent of industrial process emissions are a result of iron and steel production. See Figure 2, below. Only three counties within the Chicago MSA region (Lake County, IN; Porter County, IN; and Cook County, IL) produce emissions from iron and steel production.

Emissions from commercial and residential buildings are also notable, as shown in Figure 2. Commercial buildings, including institutional buildings, accounted for 23.1 percent of all emissions, while residential buildings accounted for 18.7 percent. This is likely due to the region's northern climate, leading to significant heating and cooling needs, as well as regional concentrations of older building stock. Within the residential buildings sector, natural gas use accounts for approximately 61 percent of emissions while electricity use accounts for 39 percent. Within the commercial buildings sector, natural gas use accounts for about 38 percent of GHG emissions while electricity use accounts for 62 percent.

Energy generation emissions, or emissions from the power sector not directly attributable to consumers, account for an additional 5 percent of emissions. Agriculture (0.4 percent), waste (0.7 percent), and wastewater (0.1 percent) are the smallest shares of the overall GHG emissions inventory, shown in Figure 2. Carbon sequestration, focused on trees and forestlands, removed an estimated 1.49 MMTCO2e in 2020.

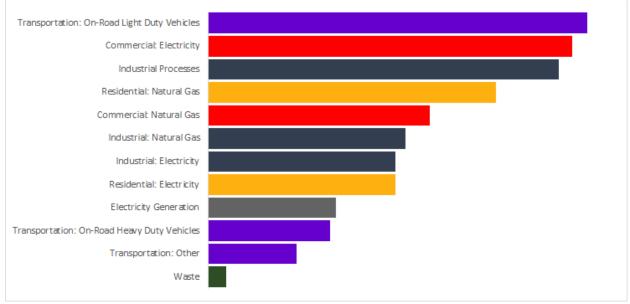
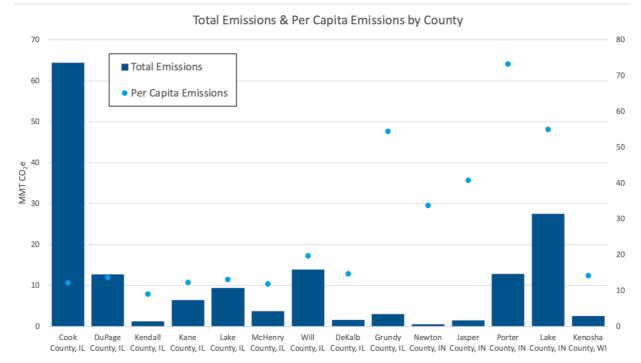


Figure 3. Greenhouse gas emissions in the Chicago MSA region by subsector, listed in order of greatest to least share of the total inventory, 2020

Emissions from electricity generation — serving residential, commercial, and industrial buildings — account for 34 percent of total emissions. Natural gas emissions associated with onsite residential, commercial, and industrial sector fuel use account for 28 percent of total emissions. Most emissions in the transportation sector are associated with gasoline and diesel.¹⁴

2.4 Results by county


Figure 4 and Table 2 provide total and per capita GHG emissions respectively at the county level for 2020. Notably, Cook County, IL generated the most emissions of any geography in the region by a significant margin (40 percent of total emissions, or 64.3 MMTCO2e), followed by Lake County, IN (17 percent, or 27.4 MMT CO2e); Will County, IL (9 percent, or 13.8 MMT CO2e), and DuPage County, IL (8 percent, or 12.7 MMT CO2e). Newton County, IN produced the least emissions (0.5 MMT CO2e), followed by Jasper County, IN (1.3 MMT CO2e).

On a per capita basis, Porter County, IN (73.2 MT C02e/person); Lake County, IN (55 MT C02e/person); and Grundy County, IL (54.4 MT C02e/person) produced the most emissions per capita. Kendall County, IL (9.04 MT C02e/person); McHenry County, IL (11.8 MT C02e/person); and Cook County, IL (12.2 MT C02e/person) were the most efficient.

Source: CMAP, 2024.

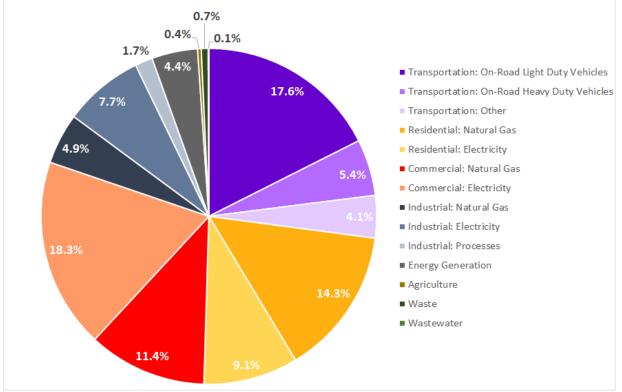
¹⁴ Electricity used to power electric vehicles cannot be attributed to the transportation sector at this time.

Source: CMAP, 2024.

Table 2. Greenhouse gas emissions in the Chicago MSA region, total and
per capita, by county, 2020

C	Total emissions		Per capita emissions	
County	(MMT C02e)	(Percent)	(MT C02e/person)	
Cook County, IL	64.3	40%	12.2	
DuPage County, IL	12.7	8%	13.6	
Kendall County, IL	1.2	1%	9	
Kane County, IL	6.3	4%	12.2	
Lake County, IL	9.4	6%	13.1	
McHenry County, IL	3.7	2%	11.8	
Will County, IL	13.8	9%	19.8	
DeKalb County, IL	1.5	1%	14.7	
Grundy County, IL	2.9	2%	54.4	
Newton County, IN	0.5	0%	33.8	
Jasper County, IN	1.3	1%	40.9	
Porter County, IN	12.7	8%	73.2	
Lake County, IN	27.4	17%	55	
Kenosha County, WI	2.4	1%	14.1	

Source: CMAP, 2024


2.5 Results by state

When viewing Chicago MSA GHG emissions by state, stark differences in the types of regional emissions come into focus. For example, nearly 85 percent of all industrial emissions are concentrated in Lake County, IN; Porter County, IN; and Cook County, IL.

Illinois portion of the Chicago MSA

The Illinois portion of the Chicago MSA represents 72 percent of the region's total GHG emissions and includes the counties of Cook, DuPage, Kendall, Kane, Lake, McHenry, Will, DeKalb, and Grundy. These emissions are detailed by subsector in Figure 5.

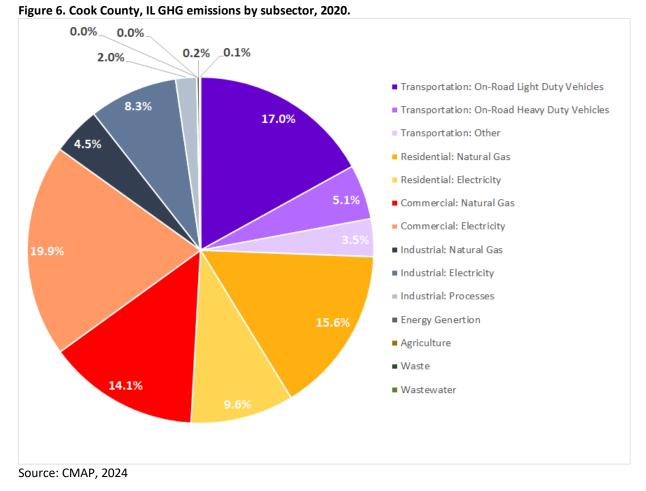

Generally speaking, emissions attributed to Illinois mirror the rest of the MSA; however, Illinois industrial emissions represent a much smaller portion of the overall MSA's emissions profile — a total of 14.3 percent versus 28.9 percent for the total Chicago MSA inventory.

Figure 5. Illinois portion of the Chicago MSA GHG emissions by subsector, 2020.

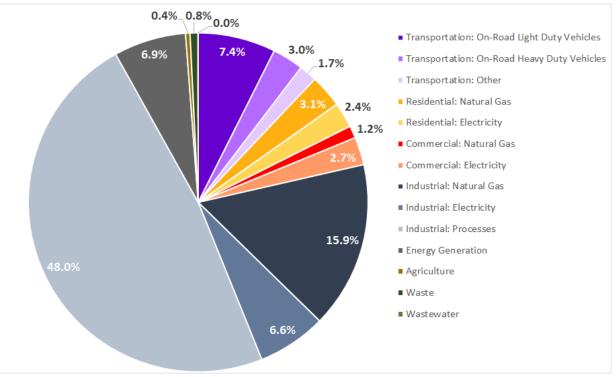

Source: CMAP, 2024

Figure 6 details the GHG emissions for Cook County, which contributes the greatest share of emissions (40 percent) among all counties in the Chicago MSA. The percentage of Cook County's overall emissions from transportation (25.6 percent) is slightly lower than the total Illinois portion of the MSA (27.1 percent), and its residential and commercial building emissions (59.2 percent of the total) are slightly higher than the total Illinois portion of the MSA (53.1 percent). For Cook County, these results are likely due to the comparatively dense land use pattern, high access to the regional transit system, and significant building heating and cooling needs.

Indiana portion of the Chicago MSA

The Indiana portion of the Chicago MSA represents 26 percent of the total MSA emissions and includes the counties of Newton, Jasper, Porter, and Lake. As shown in Figure 7, northwest Indiana has a significantly larger percentage of emissions from industrial energy emissions compared with other parts of the MSA. The Northwestern Indiana Regional Planning Commission's (NIRPC) 2017 GHG emissions inventory attributed over half of the area's GHG emissions to this source. Similarly, the 2020 Chicago MSA inventory also found that 48 percent of GHG emissions in the four Indiana counties come from industrial processes, with additional emissions from industrial electricity and natural gas use for a combined total of 71 percent of all emissions in these four counties.

Figure 7. Indiana portion of the Chicago MSA GHG emissions by subsector, 2020

Figure 8 provides the emissions inventory by subsector for Lake County, IN. Lake County contributes the second largest share of greenhouse gas emissions (27.4 percent) among all the counties in the Chicago MSA region. Notably, however, Lake County's inventory differs significantly from Cook County's. Total industrial emissions in Lake County represent 69 percent of emissions (18.9 MMTCO2e) — considerably higher than Cook County, where they make up 15 percent (9.5 MMTCO2e) of total emissions. Industrial processes represent the highest contributing subsector in Lake County (45 percent), compared to only 2 percent for Cook County. In fact, Lake County represents 42 percent of all industrial emissions and 52 percent of all industrial processes, Lake County's highest contributing sectors are transportation (11 percent) and energy generation (9 percent).

Source: CMAP, 2024

Figure 8. Lake County, IN GHG emissions by subsector, 2020

Wisconsin portion of the Chicago MSA

The Wisconsin portion of the Chicago MSA represents 1.5 percent of total MSA emissions and includes Kenosha County. Figure 9 provides the GHG emissions by subsector for this county and highlights very distinct differences from the regional picture. Compared to the regional inventory, industry accounts for a relatively small portion of Kenosha County's greenhouse gas emissions (8.1 vs. 28.9 percent), while both transportation and commercial building emissions are a greater portion of the overall profile.

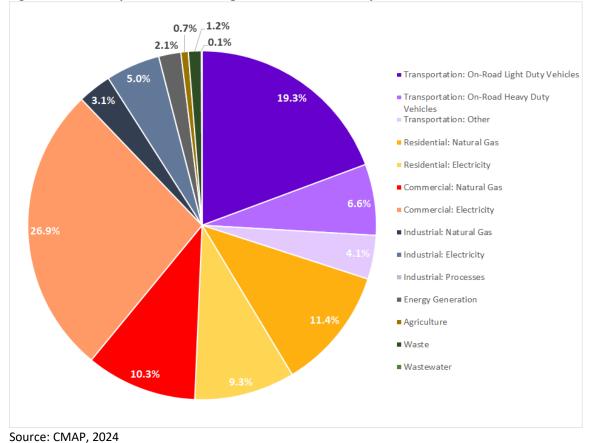


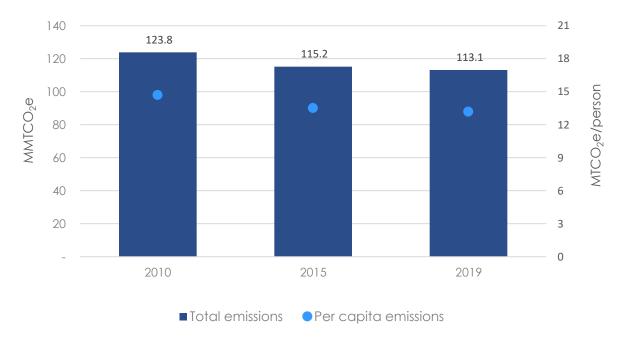
Figure 9. Wisconsin portion of the Chicago MSA GHG emissions by subsector, 2020

2.5.1 Past inventories and trends

The 2020 Chicago MSA inventory was the first conducted for the Chicago MSA, but several previous inventories for sub-geographies within the MSA can provide key insights into ongoing trends. Most notably, CMAP references the 2010, 2015, and 2019 GHG emissions inventories for the seven-county CMAP region and the 2017 GHG emissions inventory for two counties in the NIRPC region. While these inventories used different methodologies than the 2020 Chicago MSA inventory, they can be useful for studying high-level trends.

CMAP has been conducting regional GHG emissions inventories every five years since 2010 for the seven counties in the agency's jurisdiction: Cook, DuPage, Kane, Kendall, Lake, McHenry, and Will.¹⁵ These inventories follow the Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC) Basic methodology¹⁶ and show emissions at the county level. Consistent with the GPC Basic methodology, CMAP's past inventories did not include industrial processes, agriculture, or sequestration.

CMAP's previous inventories also differ from the 2020 Chicago MSA inventory in their approach to building energy. CMAP's previous inventories used energy use data provided by natural gas and electricity utilities, rather than EPA data, and applied a region-specific emissions factor to estimate

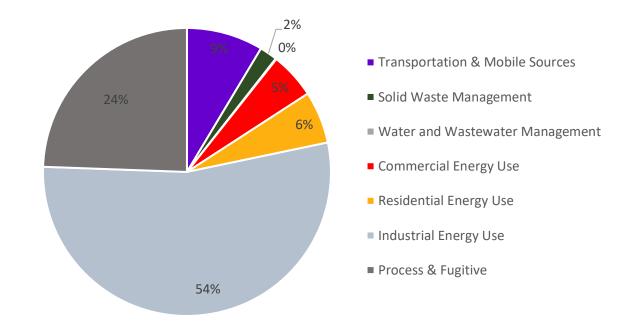

¹⁵ Full inventory available at: <u>https://www.cmap.illinois.gov/data/greenhouse-gas-inventory</u>

¹⁶ Inventory methodology available at: <u>https://ghgprotocol.org/ghg-protocol-cities</u>

electricity emissions. This custom emissions factor is intended to account for the relatively high proportion of nuclear energy in the ComEd service area, relative to the larger eGRID region.

The CMAP region's most recent inventory was conducted for 2019 and included an update of 2010 and 2015 data. As shown in figure 10, the 2019 inventory found a 9 percent emissions decrease between 2010 and 2019. This reduction was due primarily to a transition away from coal in electricity generation, in favor of lower emissions fuels, including natural gas, solar, and wind. During this same period, emissions from on-site natural gas consumption increased by 20 percent and emissions from transportation increased by 2 percent.

Differences in methodologies and data sources make direct comparisons between past CMAP GHG emissions inventories and the 2020 Chicago MSA inventory difficult, though analysis of both datasets suggests that 2010-2019 trends remain largely unchanged. Setting aside sectors not included in the 2019 inventory (agriculture, industrial processes, and sequestration), the CMAP region generated 109.5 MMTCO2e in 2020, which is comparable to the 113.1 MMTCO2e¹⁷ reported in the 2019 inventory.


Source: CMAP, 2022

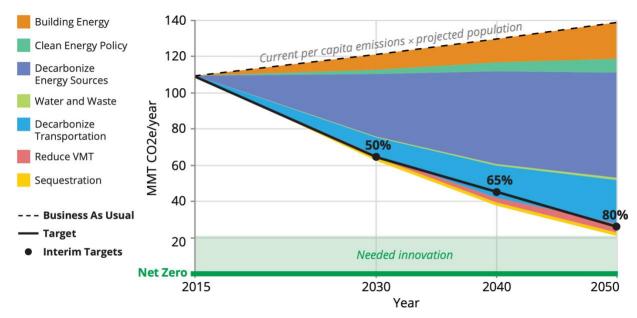
NIRPC conducted its first GHG emissions inventory in 2017. The inventory covered all three counties within NIRPC's jurisdiction; however, only two of those counties, Lake and Porter, are in the Chicago MSA. The 2017 NIRPC inventory relied on consumption data provided by local utilities, rather than the U.S. EPA data used in the 2020 Chicago MSA inventory. The 2017 NIRPC inventory also included different

¹⁷ This 2019 figure is 0.72 MMTCO2e higher than the total initially published in CMAP's Regional GHG emissions inventory (112.35 MMTCO2e). This is due to the addition of emissions data from two municipal electric utilities in Kane County after publication.

sectors than the 2020 Chicago MSA inventory; agriculture and sequestration were omitted, but importantly, industrial processes were included.

Because the 2017 NIRPC inventory did not provide county level data and was conducted for a geography that does not fully align with the 2020 inventory, assessing trends is difficult. There are, nonetheless, several findings that are instructive to emissions planning. Most notably, the 2017 NIRPC inventory found that industrial processes and energy use (including fugitive emissions) accounted for 80 percent of all GHG emissions in the region, which is comparable to the 2020 Chicago MSA inventory estimates for Lake (IN) and Porter counties.

Figure 11: 2017 GHG emissions in the NIRPC region


Source: NIRPC, 2022

3 GHG Emissions Projections

Emissions Projections for the entire Chicago MSA based on the 2020 GHG Inventory and analysis of available mitigation strategies will be done for the CCAP. This was not done for this PCAP.

However, the 2021 Climate Action Plan for the Chicago Region projected emissions based on the 2015 GHG inventory that was done for the 7-county Chicago metropolitan region only. These are presented here as the best projections currently available. These wedge graphs also provide helpful visualizations of the influence of different sectors in reducing GHG emissions.

The projections are organized by each of the 8 mitigation objectives that encompass all strategies that follow in the Complete List of GHG Reduction Strategies in *Section 6*.

Wedge graphs that illustrate the relative impact of each GHG Reduction Objective are also presented on respective pages of the Priority GHG Reduction Strategies (*Section 5*) for visualization purposes.

4 GHG Reduction Targets

GHG Reduction targets have not been set for the entire Chicago MSA inclusive of all sectors covered by the 2020 GHG inventory. This critical task will be done with stakeholder engagement for the CCAP.

However, the 2021 Climate Action Plan for the Chicago Region set mitigation goals and objectives based on the 2015 GHG inventory that was done for the 7-county Chicago metropolitan region only. Sciencebased targets were set following robust stakeholder feedback from within the Chicago metro region. Objectives presented are foundational and the goals are representative to support understanding of the Priority GHG Reduction Strategies and Additional Strategies.

(2021) Regional GHG Reduction Goal: Net zero greenhouse gas emissions

Interim GHG Reduction Targets:

- 2030 Reduce GHG emissions 50% from 2005 levels
- 2040 Reduce GHG emissions 65% from 2005 levels
- 2050 Reduce GHG emissions at least 80% from 2005 levels

5 Priority GHG Reduction Strategies for the Chicago MSA

All GHG Reduction Strategies are presented with critical planning information, including:

- Reference #
- GHG Reduction Potential
- Key implementers
- Timeline
- Scale
- Authority to Implement
- Performance Indicators
- LIDAC Considerations
- Co-benefits

All GHG Reduction Strategies*, are organized into these 8 GHG Reduction Objectives.

- 1. Demonstrate Leadership
- 2. Decarbonize Energy Sources
- 3. Optimize Building Energy
- 4. Implement Clean Energy Policies
- 5. Decarbonize Transportation
- 6. Reduce Vehicle Miles Traveled
- 7. Manage Water and Waste Sustainably
- 8. Sustain Ecosystems to Sequester Carbon

This PCAP uses this hierarchy to organize GHG reduction actions:

Objective

All GHG Reduction Strategies

Priority GHG Reduction Strategies

Sample Quantified Measures

On the following pages are Priority GHG Reduction Strategies for the Chicago MSA with associated, quantified measures. These measures are used to define a scale, rate, and implementation approach that quantify the GHG reduction potential for each of these strategies. Multiple measures have been quantified for some strategies demonstrating broad opportunities to implement that Priority Strategy.

Many of these quantified measures specifically support championed projects that are likely to be submitted for CPRG Implementation funding consideration. This is true of the measures used to illustrate GHG reduction potential for Strategies W1 and DT 15 which quantify achievable results within the 5-year period of the CPRG Implementation timeline. Other measures illustrate more aspirational results like the measures used to quantify Strategies DE2 and VMT11. The quantified *measures* should not be perceived as restrictive approaches to implementing these *strategies*. **Eligible applicants for CPRG Implementation funding may propose any suitable project that addresses any of the overarching Priority GHG Reduction Strategies, per CPRG Implementation General Competition guidelines.**

Chicago MSA PCAP 3/1/2024

*Note that the Chicago MSA PCAP uses the term "strategy" as the enabling group of actions eligible for CPRG funding and the term "measure" as a specific quantifiable example of actions that could be done to implement that strategy. This was done to be consistent with the hierarchy of Goals, Objectives, and Strategies used in the 2021 Climate Action Plan for the Chicago Region. The term "Priority GHG Reduction Strategy" should be interpreted to mean "priority measure" in <u>CPRG Implementation General Competition</u> guidance.

Detailed information about the methods used to quantify GHG reduction potential, scope of the and the rationale for selecting these strategies, see *Appendix A*.

5.1 Summary of Priority GHG Reduction Strategies

Ref#	Objective	Priority GHG Reduction Strategy
DE2	Decarbonize Energy Sources	Increase renewable energy supply and energy storage capacity for residential, commercial, municipal, institutional and industrial electricity use.
BE1	Optimize Building Energy	Engage <i>residential</i> utility customers to optimize building <i>efficiency</i> leveraging residential energy assessments, energy efficiency rebates, incentives, tax credits and weatherization, housing rehab, and energy assistance programs.
BE2	Optimize Building Energy	Engage <i>residential</i> utility customers to <i>electrify</i> space and water heating leveraging residential energy assessments, rebates, incentives, tax credits and weatherization and energy assistance programs.
BE3	Optimize Building Energy	Engage commercial, institutional, and industrial utility customers to optimize building efficiency leveraging tools and programs such as facility assessments, energy management, retrocommissioning, demand response, performance contracting, energy efficiency rebates, incentives, tax credits, and PACE financing.
BE4	Optimize Building Energy	Engage <i>commercial, institutional, and industrial</i> utility customers to <i>electrify</i> buildings leveraging tools and programs such as facility assessments, energy management, rebates, incentives, tax credits, direct pay and PACE financing.
BE6	Optimize Building Energy	Manage non-CO2 GHG emissions including CH4, HFC, SF6 and others through improved industrial processes, alternative solutions, efficiency, leak detection and reduction, and recovery.
DT7	Decarbonize Transportation	Transition transit trains, buses and related service equipment to low and zero- emission operation through equipment replacement and clean fueling infrastructure investments.
DT9	Decarbonize Transportation	Transition medium and heavy duty freight vehicles and non road equipment to low and zero-emission equipment through vehicle replacement and clean fueling infrastructure investments.
DT11	Decarbonize Transportation	Reduce freight vehicle and train idling by managing loading/unloading queues, decreasing the number of at-grade crossings through capital projects, idling control technologies, modernizing auxillary power and refrigeration systems.
DT15	Decarbonize Transportation	Transition gas-powered landscaping equipment to low and zero emissions models.
VMT1	Reduce Vehicle Miles Traveled	Establish a regional network of mobility hubs and expand shared micromobility and electric micromobility systems.
W1	Manage Water and Waste Sustainably	Capture biogas and convert to energy.
W3	Manage Water and Waste Sustainably	Increase composting and biological treatment of waste. Utilize energy and biosolid by-products.

5.2 Priority GHG Reduction Strategies with Quantified Measures

1. Decarbonize Energy Sources -E2

	Objective	Priority GHG Reduction Strategy
		Increase renewable energy supply and energy storage capacity for residential, commercial, municipal, Institutional, and
DE2	Decarbonize Energy Sources	industrial electricity use.

Measure 1: Generate 40 percent of electricity from renewable sources by 2030.

Estimated reduction: 23.11 MMT CO2e annually in 2030

Measure 2: Increase on-site renewable energy by installing solar arrays at 20% of industrial manufacturing, including metal and food and beverage manufacturing facilities by 2030

Estimated reduction: 0.057 MMT CO2e annually in 2030

Key implementers: Local, county, state governments; utilities; property owners; clean energy industry **Timeline**: 0-5+ yrs

Scale: Local, regional

Authority to implement: Existing

Performance indicators: RE supply and storage capacity for all sectors

LIDAC considerations: Prioritize equitable access to clean energy. Create clean energy jobs in DACs. **Co-benefits**: Modernized, efficient electric grid; resilient distributed generation; thriving RE industry; reduced long-term utility costs; create clean energy jobs

2.	Optimize	Building	Energy -	BE1
----	----------	----------	----------	-----

Objective	Priority GHG Reduction Strategy
	Engage <i>residential</i> utility customers to optimize building <i>efficiency</i> leveraging residential energy assessments, energy efficiency rebates, incentives, tax credits and weatherization,
Optimize Building Energy	housing rehab, and energy assistance programs.

Measure: Assess residential homes for cost-effective energy efficiency measures, including weatherization and building shell improvements, energy-efficient HVAC and appliances and other measures by 2030.

Estimated reduction: 0.41 MMTCO2e cumulative from 2024 to 2030

Key implementers: Local and county government, homeowners, building owners, utilities, clean energy industry, CAAs, nonprofits

Timeline: 0-5+ yrs

Scale: Local, regional, state

Authority to implement: Existing

Performance indicators: Investments made. Energy and cost savings achieved.

LIDAC considerations: Prioritize investment in DACs, multi-family housing, and where populations are vulnerable to poor indoor air quality. Reduce household energy burden. Provide energy savings information in all languages and formats.

Co-benefits: Improved indoor air quality; increases impact of grid decarbonization

3. Optimize Building Energy - BE2

Objective	Priority GHG Reduction Strategy
	Engage <i>residential</i> utility customers to <i>electrify</i> space and water heating leveraging residential energy assessments, rebates, incentives, tax credits and weatherization and energy
Optimize Building Energy	assistance programs.

Measure: Replace existing fossil-fueled furnaces with more efficient heat pumps by 2030

Estimated reduction: 0.16 MMTCO2e from 2024 to 2030

Key implementers: Local and county government, homeowners, building owners, utilities, clean energy industry, CAAs, nonprofits

Timeline: 0-5+ yrs

Scale: Local, regional, state

Authority to implement: Existing

Performance indicators: Investments made. Demand shifted from gas to electric energy.

LIDAC considerations: Prioritize investment in DACs, multi-family housing, and where populations are vulnerable to poor indoor air quality. Reduce household energy burden. Provide energy savings information in all languages and formats.

Co-benefits: Improved indoor air quality; increases impact of grid decarbonization

4. Optimize Building Energy - BE3

Objective	Priority GHG Reduction Strategy
	Engage commercial, institutional, and industrial utility
	customers to optimize building efficiency leveraging tools and
	programs such as facility assessments, energy management,
	retro commissioning, demand response, performance
	contracting, energy efficiency rebates, incentives, tax credits ,
Optimize Building Energy	and PACE financing.

Measure 1: Replace 30% of fossil fuel boiler and process heating equipment/processes with electric, hydrogen, or other non-GHG emitting based alternatives for all low and medium heat processes by 2030

Estimated reduction: 4.93 MMT CO2e annually in 2030

Measure 2: Increase energy efficiency of heating, cooling and ventilation, lighting, envelope, appliances, and other components by 40% by 2030.

Estimated reduction: 1.08 MMT CO2e annually in 2030

Measure 3: Train workforce of industry decarbonization contractors by 2030.

Estimated reduction: 0.77 MMT CO2e annually in 2030

Measure 4: Improve energy efficiency standards for food and beverage and metal manufacturers by 15% by 2030.

Estimated reduction: 1.11 MMT CO2e annually in 2030

Measure 5: Replace high GWP F-gas refrigeration system with CO2 natural refrigerant system at 50% of commercial facilities

Estimated reduction: 0.89 MMT CO2e annually in 2030

Measure 6: Replace variable speed drives on HVAC and pollution control devices at 100 food and beverage and metal manufacturing facilities

Estimated reduction: 0.077 MMT CO2e annually in 2030

Measure 7: Replace high GWP F-gas industrial refrigeration systems with ammonia or another natural refrigerant system at 50% of food and beverage and chemical manufacturers in Chicago MSA

Estimated reduction: 0.023 MMT CO2e annually in 2030

Key implementers: Utilities, businesses, local government, institutions

Timeline: 0-5+ yrs Scale: Local, regional Authority to implement: Existing Performance indicators: Investments made. Energy and cost savings achieved. LIDAC considerations: Prioritize investment in DACs. Cost savings to protect jobs. Co-benefits: Improved performance of facilities, long-term cost savings. Increases impact of grid decarbonization.

5. Optimize Building Energy - BE4

Objective	Priority GHG Reduction Strategy
	Engage <i>commercial, institutional, and industrial</i> utility customers to <i>electrify</i> buildings leveraging tools and programs such as facility assessments, energy
Optimize Building Energy	management, rebates, incentives, tax credits, direct pay and PACE financing.

Measure: Retrofit existing public sector buildings with more energy efficient lighting, HVAC, and other measures.

Estimated reduction: 0.66 MMTCO2e cumulative from 2024 to 2030

Key implementers: Utilities, businesses, local government, institutions Timeline: 1-5 yrs Scale: Local, regional Authority to implement: Existing Performance indicators: Investments made. Demand shifted from gas to electric energy. LIDAC considerations: Prioritize investment in DACs and where workers are exposed to poor air quality. Co-benefits: Improved indoor air quality; increases impact of grid decarbonization

6. Optimize Building Energy - BE6

Objective	Priority GHG Reduction Strategy
	Manage non-CO2 GHG emissions including CH4, HFC, SF6 and others through
Optimize Building Energy	improved industrial processes, alternative solutions, efficiency, leak detection and reduction, and recovery.

Measure: Substitute F-gas refrigerants by 67% and maintain or retrofit existing equipment at all industrial facilities by 2030.

Estimated reduction: 0.94 MMT CO2e annually in 2030

Key implementers: Federal, state, local government, businesses Timeline: 0-5 yrs Scale: Local, regional Authority to implement: Existing Performance indicators: Investments made. Reduction in the use of high GWP refrigerant. LIDAC considerations: Prioritize investment in DACs. Cost savings to protect jobs. Co-benefits: High emissions reduction benefits vulnerable populations.

7. Decarbonize Transportation - DT7

Objective Priority GHG Reduction Strategy					
	Transition transit trains, buses, and related service equipment to low and zero-				
Decarbonize	emission operation through equipment replacement and clean fueling				
Transportation	infrastructure investments.				

Measure 1: Transition transit fleets to 100% electric by 2040

Estimated reduction: 0.286 MMT CO2e annually in 2040.

Measure 2: Deploy eight electric trainsets into service, retire remaining 16 Tier 0 locomotives in Metra's regional passenger rail fleet.

Estimated reduction: 0.027 MMT CO2e annually in 2030

Key implementers: Transit agencies, state government, utilities Timeline: 0-4 yrs Scale: Local Authority to implement: Existing Performance indicators: Deployment of low/zero emissions fleets and fueling infrastructure LIDAC considerations: Protect vulnerable residents from tailpipe emissions. Focus investment to benefit DACs.

Co-benefits: Reduced health impacts of tailpipe emissions

8. Decarbonize Transportation - DT9

Objective	Priority GHG Reduction Strategy					
	Transition medium and heavy duty freight vehicles and non road equipment to low					
Decarbonize	and zero-emission equipment and invest in distribution, make-ready and clean					
Transportation	fueling infrastructure					

Measure 1: Support electrification or fuel-switching of 2.5% medium- and heavy-duty vehicles by 2030

Estimated reduction: 0.12 MMT CO2e annually in 2030

Measure 2: Electrify 2.5% of non-road freight vehicles, especially terminal trucks and material handlers and install clean fueling infrastructure

Estimated reduction: 0.0138 MMT CO2e annually in 2030

Key implementers: State government, private sector Timeline: 1-5 yrs Scale: State, regional Authority to implement: Existing Performance indicators: Deployment of low/zero emissions fleets and fueling infrastructure LIDAC considerations: Protect workers and vulnerable residents from tailpipe emissions. Focus investment to benefit DACs. Co-benefits: Reduced health impacts of tailpipe emissions

9. Decarbonize Transportation- DT11

Objective	Priority GHG Reduction Strategy					
Decarbonize	Reduce freight vehicle and train idling by managing loading/unloading queues, decreasing the number of at-grade crossings through capital projects, idling control					
Transportation	technologies, and modernizing auxiliary power and refrigeration systems.					

Measure: Reduce freight locomotive idling emissions by 2.5% by deploying shore power idle reduction units

Estimated reduction: 0.0053 MTTCO2e annually in 2030

Key implementers: Local, state governments, rail, private sector

Timeline: 1-5 yrs

Scale: Regional, local

Authority to implement: Coordination across jurisdictions

Performance indicators: Idling hours and fuel consumption reduced. Adoption of electric transport refrigeration units (eTRU)

LIDAC considerations: Protect workers and vulnerable residents from tailpipe emissions. Focus investment to benefit DACs.

Co-benefits: Reduce congestion and lost time for drivers.

10. Decarbonize Transportation - DT15

Objective	Priority GHG Reduction Strategy
Decarbonize	
Transportation	Transition gas-powered landscaping equipment to low and zero emissions models.

Measure: Replace gas-powered lawn and garden equipment with zero emissions electric models at this rate 5% of residential mowers; 2% of commercial mowers' and 20% of commercial hand-held equipment (e.g. leaf blowers)

Estimated reduction: 0.04162 MMT COe annually in 2030

Key implementers: Local, county, and state governments, private sector Timeline: 0-2 yrs Scale: Regional, local Authority to implement: Existing **Performance indicators:** Share of zero-emissions landscaping equipment in use. LIDAC considerations: Reduce exposure of workers and vulnerable residents to noise and emissions from equipment. **Co-benefits**: Reduction of noise and criteria pollutants.

11. Reduce Vehicle Miles Traveled - VMT11

Objective	Priority GHG Reduction Strategy				
Reduce Vehicle Miles	Establish a regional network of mobility hubs and expand shared micromobility and				
Traveled	electric micromobility systems.				

Measure: Replace 35 percent of low-milage SOV trips with electric and/or micromobility trips by 2030.

Estimated reduction: 0.22 MMT CO2e annually in 2030

Key implementers: Local and county government, transit agencies

Timeline: 2-4 yrs

Scale: Regional

Authority to implement: Existing

Performance indicators: Share of the region's population with access to micromobility options, share of transit stations with last-mile transportation options, creation of e-mobility rebate programs LIDAC considerations: Provide safe and accessible transportation for all. Consider DAC personal safety

needs. Balance pedestrian safety.

Co-benefits: Safe active transportation; connected communities; reduced tailpipe emissions; improved health and wellness; reduced infrastructure demands for personal vehicles

Objective **Priority GHG Reduction Strategy** Manage Water and Waste Capture biogas and convert to energy. Sustainably

12. Manage Water and Waste Sustainably - W1

Measure: Capture 25% of biogas from publicly owned wastewater treatment in the Chicago MSA and additional landfill biogas and convert to renewable natural gas.

Estimated reduction: 0.12451 MMTCO2e annually in 2027

Key implementers: Local and state governments, POTW, waste industry Timeline: 1-5 yrs Scale: Local, regional Authority to implement: Existing Performance indicators: Volume of methane captured. Volume of energy produced. LIDAC considerations: Reduce exposure to DACs. Engage diverse contractors Co-benefits: Reduced methane gas emissions. Displacement of fossil fuels

13. Manage Water and Waste Sustainably - W3

Objective	Priority GHG Reduction Strategy
Manage Water and Waste	Increase composting and biological treatment of waste. Utilize energy and biosolid
Sustainably	by-products.

Measure: Divert nearly 20% of food waste generated in Cook County annually (over 311,000 tons) by establish food waste reduction, collection, and anaerobic digestion programs.

Estimated reduction: 0.20352 MMTCO2e annually in 2030

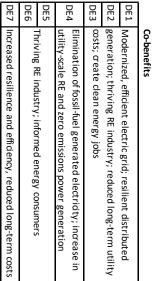
Key implementers: Local governments, waste industry Timeline: 0-5+ yrs Scale: Local Authority to implement: Existing Performance indicators: Volume of waste composted and utilized LIDAC considerations: Expanded recycling and organic waste industries; value from waste captured. Co-benefits: Reduced methane gas emissions. Enriched landscapes

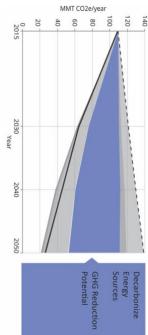
6 Complete List of GHG Reduction Strategies

The following pages contain the full range of GHG Reduction Strategies that may guides strategic climate mitigation action in the Chicago MSA. These strategies are organized by their overarching Objective. Priority GHG Reduction Strategies are highlighted in blue.

Strategies identified for the 2012 Climate Action Plan for the Chicago Region form the basis for this list, but strategies have been updated, expanded, and refined based on CMAP's research and review. These should guide accelerated climate action now. They will also be used in the development of the forthcoming CCAP.

U

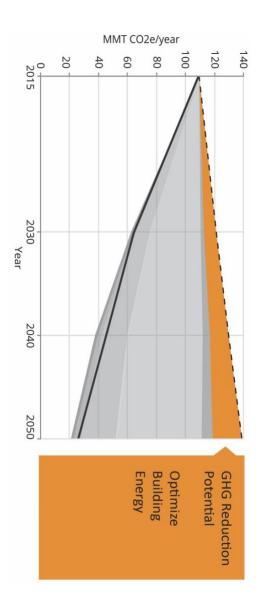

6.1 Demonstrate Leadership


Co-benefits

L6 Energy collabc		L4 Local p	L3 Improv	L2 Local g	L1 Local e L1 aligned
Energy, water conservation, and waste reduction targets aligned; collaborative implementation and accelerated GHG reduction	Leading by example inspires followers and cooperation across sectors; informed and engaged constituents Energy, water conservation, and waste reduction targets aligned:	Local plans guide effective action	Improved operational performance through smart technology	Local green jobs and sustainable businesses; local production and consumption; reduced transportation costs	Local energy, water conservation, and waste reduction targets aligned; collaborative and accelerated GHG reduction

6.2 Decarbonize Energy Sources

DE1 DE2	DE 7	DE6	DES	DE4	DE3	DE2	DE1	Refi	
Co-benefits Modernized, efficient electric grid; resilient distributed generation; thriving RE industry; reduced long-term utility ∞sts; <i>a</i> reate clean energy jobs		Engage the community to choose clean energy through procurement, aggregation, community solar, and other collaborative programs and by participating in financing, rebate, and incentive programs.	Procure dean energy for municipal and industrial operations. Low	Accelerate and broaden decarbonization of the grid throughout the MSA inclusive of all power supply to the region.	Improve and expand electricity transmission infrastructure.		Bolster capacity of the distribution system to integrate distributed energy resources (DER) and invest in renewable energy (RE) infrastructure, including interconnection, distribution, microgrids, and storage capacity.	Ref# Strategy	DECARBONIZE ENE
	High	Enabling	Low		ä	High		GHG Reduction Potential	RG
e/year 8 0 12 14	Local, county, state governments; utilities, private sector.	Local, county, state governments; 0-4 yrs regulatory agencies; clean energy industry; non-profits	State and local governments, industry	Utilities, state and federal regulators, investors	State governments, regional transmission organizations, utilities	Local, county, state governments; utilities; property owners; clean energy industry	Utilities, clean energy industry, state government	Key implementers	GY SOURCES
	5+ yrs	0-4 yrs				0-5+ vrs		Timeline Scale	S
		Local, regional	Local	Regional federal approv:		regional			Z
Decarbo Energy Sources GHG Re	Unsure	Existing		federal approval	State,		Existing	Authority to Implement	
Decarbonize Energy Sources GHG Reduction	R&D and pilot project	Investment in clean energy. Participation in programs and improved access to RE.	Load shift to dean energy supply	RE and zero emissions generation capacity	Grid capacity, reliability and efficiency.	RE supply and storage capacity for all sectors	Development of DER and supportive infrastructure. Expansion of RE capacity.	ority lement Performance Indicators	
	Reduce long-term energy burden.	Provide equitable access to dean energy. Reduce household energy burden.	Load shift to dean energy Prioritize access to clean energy jobs in DACs.	Replace coal and gas-fired power to improve air quality for communities in transition. Support clean energy jobs training for displaced workers.	Support dean energy jobs training for displaced fossil fuel workers.	Prioritize equitable access to dean energy. Create clean energy jobs in DACs.	Prioritize investment to serve disadvantaged communities (DACs).	LIDAC Considerations	



6.3 Optimize Building Energy

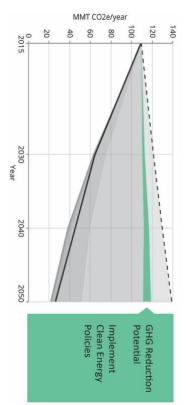
BE6	BE5	BE4	BE3	BE2	BE1	Ref#	
Manage non-CO2 GHG emissions including CH4, HFC, SF6 and others through improved industrial processes, alternative solutions, efficiency, leak detection and reduction, and recovery.	Retrofit public buildings, facilities, and streetlights for maximum efficiency.	Engage <i>commercial, institutional, and industrial</i> utility customers to <i>electrify</i> buildings leveraging tools and programs such as facility assessments, energy management, rebates, incentives, tax credits, direct pay and PACE financing.	Engage <i>commercial, institutional, and industrial</i> utility customers ^{High} to optimize building <i>efficiency</i> leveraging tools and programs such as fadiity assessments, energy management, retrocommissioning, demand response, performance contracting, energy efficiency rebates, incentives, tax credits, and PACE financing.	Engage residential utility customers to <i>electrify</i> space and water heating leveraging residential energy assessments, rebates, incentives and tax credits and weatherization and energy assistance programs.	Engage <i>residential</i> utility customers to optimize building <i>efficiency</i> leveraging residential energy assessments, energy efficiency rebates, incentives, tax credits and weatherization, housing rehab, and energy assistance programs.	Ref# Strategy	OPTIMIZE BUILDING ENERGY
High	Medium		High			GHG Reduction Potential	2
Federal, state, local government, 0-5 yrs businesses	Local government, utilities, clean energy industry	institutions	Utilities, businesses, local government,	utilities, clean energy industry, CAAs, nonprofits	Local and county government, home owners, building owners,	Key implementers Timeline	ERGY
0-5 yrs	0-4 yrs	1-5 yrs		0-5+ yrs		Timeline	
Local, regional	Local		Local, regional	state	Local, regional,	Scale	
			Existing			Authority to Implement	
Investments made. Reduction in the use of high GWP refrigerant.	Investments made. Energy and cost savings achieved.	Investments made. Demand shifted from gas to electric energy.	Investments made. Energy and cost savings achieved.	Investments made. Demand shifted from gas to electric energy.	Investments made. Energy and cost savings achieved.	Authority to Implement Performance Indicators_LIDAC Considerations	
Prioritize investment in DACs. Cost savings to protect jobs.	Investments made. Energy and cost savings Reduce franchise fee burden in DACs. achieved.	Prioritize investment in DACs and where workers are exposed to poor air quality.	Prioritize investment in DACs. Cost savings to protect jobs.	burden. Provide energy savings information in all languages and formats.	Investments made. Prioritize investment in DACs, multi- Energy and cost savings family housing, and where populations achieved. are vulnerable to poor indoor air quality. Reduce household energy	LIDAC Considerations	

Ref#	Ref# Strategy (Co-benefits
BE1	Engage <i>residential</i> utility customers to optimize building <i>efficiency</i> leveraging residential energy assessments, energy efficiency rebates, incentives, tax credits and weatherization, housing rehab and energy assistance programs.	Improved indoor air quality: increases impact of grid
BE2	Engage residential utility customers to electrify space and water heating leveraging residential decarbonization energy assessments, rebates, incentives and tax credits and weatherization and energy assistance programs.	lecarbonization
	Engage commercial, institutional, and industrial utility customers to optimize building efficiency	
BE3	leveraging tools and programs such as facility assessments, energy management, retrocommissioning, demand response, performance contracting, energy efficiency rebates, incentives, tax credits, and PACE financing.	Improved performance of facilities, long-term cost savings. Increases impact of grid decarbonization.
BE4	Engage <i>commercial, institutional, and industrial</i> utility customers to <i>electrify</i> buildings leveraging tools and programs such as facility assessments, energy management, rebates, incentives, tax credits, direct pay and PACE financing.	Improved indoor air quality; increases impact of grid decarbonization
BE5	Retrofit public buildings, facilities, and streetlights for maximum efficiency.	Reduced energy costs; improved building performance; resilient facilities
BE6	Manage non-CO2 GHG emissions including CH4, HFC, SF6 and others through improved industrial processes, alternative solutions, efficiency, leak detection and reduction, and recovery.	High emissions reduction benefits vulnerable populations.

U

H

0


CIES

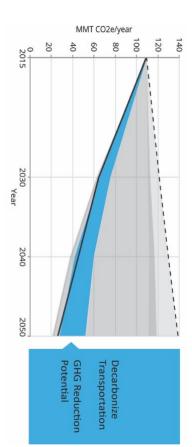
6.4 Implement Clean Energy Policies

EP5		EP4	EP3	EP2	EP1	Ref#
Support state and federal policies to advance clean energy.		Adapt zoning codes and streamline development processes to accelerate investment in solar, other renewable energy systems and energy storage.	Modernize municipal franchise agreements to leverage investment in clean energy and reduce costs to residents.	Incentivize and encourage high performance, all-electric, High and net zero new building construction.	Support robust building energy conservation codes, benchmarking, building performance standards and data Enabling transparency to optimize energy efficiency	Ref# Strategy
Enabling		Enabling	Enabling	High	Enabling	GHG Reduction Potential
ies, :ions.	Local. county. state	Local government, utilities	Utilities, municipal government	Local governments, developers, clean energy 0-5 yrs industry, utilities	Local, state, county governments, International Code Coundi (ICC)	GHG Reduction Potential Key implementers
0-5+ yrs		0-3 yrs	0-5+ yrs Local		0-5+ yrs Local	Timeline Scale
Local, state		Local	Local	Local	Local	Scale
Existing		Existing	Requires agreement between utility and municipal government	local control allowable in IL.	Dependent on ICC and state government.	Authority to Implement
performance standards in IN.	Adoption of state RE and	Permits issued for on-site RE and energy storage.	Modernized franchise agreements	Reduction in natural gas demand. All-electric homes and buildings.	Adoption of effective energy Reduce long-term energy bu conservation codes at state, Prioritize code adoption and local level compliance for UDAC	Performance Indicators
Support equitable policies and just transition.		Reduce soft costs to improve access to clean energy. Reduce household energy burden.	Eliminate franchise cost to residents.	Reduce long-term energy burden and improve indoor air quality. Prioritize affordable housing and LIDAC.	Adoption of effective energy Reduce long-term energy burden. conservation codes at state, Prioritize code adoption and local level compliance for UDAC	LIDAC Considerations

Co-benefits

	Reduced energy and water costs; improved long-term
EP1	building performance; operational resilience; leverage private investment; demonstrate technology and design
EP2	to achieve net-zero
EP3	Clean energy investment in public facilities enabled.
	Accelerated investment in solar; more affordable, safe
EP4	and effective renewable energy systems; grid resiliency
	improved.
EP5	Thriving clean energy industry

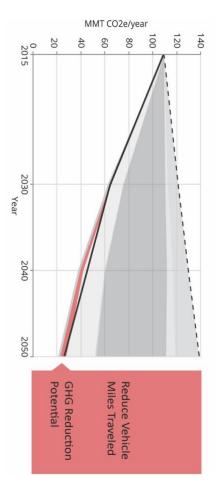
6.5 Decarbonize Transportation


DT10	DT9	DT8	DT7	DT6	DT5	DT4	DT3	DT2	DT1	Ref#
Increase the use and capacity of rail and waterborne freight systems through infrastructure investments and financial incentives.	Transition medium and heavy duty freight vehicles and non road equipment to low and zero-emission equipment through vehicle replacement and clean fueling infrastructure investments.	Transition public fleets to low and zero-emission vehicles through vehicle replacement and clean fueling infrastructure investments.	Transition transit trains, buses and related service equipment to low and zero-emission operation through equipment replacement and clean fueling infrastructure investments.	Electrify car sharing and ridehailing services.	Encourage the switch to electric passenger vehides.	Adapt development processes to accelerate investment in electric and clean hydrogen fuel infrastructure.	Create accessible and reliable networks of electric vehide (EV) chargers.	Enact and enforce anti-idling policies for passenger and commercial vehicles, freight, and transit.	Support strong federal and state fuel efficiency standards.	Strategy
Medium	High		Low		High	Enabling		Low	High	GHG Reduction Potential
State government, port authority, rail	State government, private sector 1-5 yrs	Local and state governments, transit agencies, utilities	Transit agencies, state government, utilities	State government, utilities, private sector	Federal, state, and local government, EV industry	Local government, electric utility 0-5 yrs	Federal, state, and local government, EVCS industry	State, county, and local governments, school districts, transit agencies, private sector	Federal, state government	Key implementers
2-4 yrs			0-4 vrs	2-4 yrs	0-5+ yrs		0-4 yrs	0-2 yrs	0-5+ yrs	Timeline
regional	State,	Regional	Local		Regional	Local	National, state	Local	National, state	Scale
		Existing				Amend local ordinances	Existing	Local ordinance or state law	Existing	Authority to Implement
Volume of freight cargo transportation by rail and water		Deployment of low/zero emissions fleets and fueling infrastructure		Proportion of EVs in service	Growth in EV adoption.	Codes and processes that enable investment in safe and accessible clean fueling infrastructure.	Number of accessible charging ports	Adoption of anti-idling behaviors	Increased fuel efficiency	Performance Indicators
Reduce exposure of workers and vulnerable residents to truck emissions.	Protect workers and vulnerable residents from tailpipe emissions. Focus investment to benefit DACs.	investment to benefit DACs.	Protect vulnerable residents from tailpipe emissions. Focus	transportation for all.	Clean, safe, accessible	Support disadvantaged communities in preparing for dean fuel investment.	Focus on publicly accessible corridor, workplace, and multi- family charging	Protect vulnerable residents from tailpipe emissions.	Protect vulnerable residents from tailpipe emissions. Reduce cost of operating a SOV.	UDAC Considerations

DT15	DT14	DT13	DT12	DT11	Ref#
Transition gas-powered landscaping equipment to low and zero emissions models.	Establish tracking and data gathering mechanisms for freight emissions.	Innovate freight delivery through curb management, DT13 clean freight-handling technologies, and last-mile and Medium urban freight programs.	Strategically manage extended truck parking and invest in Truck Parking Information Systems (TPIS).	Reduce freight vehide and train idling by managing loading/unloading queues, decreasing the number of at-grade crossings through capital projects, idling control technologies, and modernizing auxiliary power and refrigeration systems.	Strategy
Low	Enabling		High	Medium	GHG Reduction Potential
Local, county, and state governments, private sector	Regional agency, academia	Local government, private sector 2-5 yrs	Local and state governments, private sector	Local, state governments, rail, private sector	GHG Reduction Potential Key implementers
0-2 yrs	1-3 yrs		3 years	1-5 yrs	Timeline Scale
Regional, local	Regional	Local	Regional Unsure	Regional, local	Scale
- EXISCILIE	п 	Amend local ordinances	Unsure	Coordination across jurisdictions	Authority to Implement
Share of zero-emissions landscaping equipment in use.	Quality and quantity of data available	Establishment of innovative freight programs, VMT reduced	Idling hours and fuel consumption reduced. Adoption of TPIS	Idling hours and fuel consumption reduced. Adoption of electric transport refrigeration units (eTRU)	Performance Indicators
Reduce exposure of workers and vulnerable residents to noise and emissions from equipment.	Track impacts on DAC		residents from tailpipe emissions. Focus investment to benefit DACs.	Protect workers and vulnerable	LIDAC Considerations

Ref# Co-benefits

DT1	
	Reduce criteria air pollutants
DT2	
DT3	Accelerated EV adoption.
	Accelerated investment in EV charging infrastructure;
DT4	reduced soft costs; safe and effective EV charging
	systems
DT5	
DT6	
DT7	Reduced health impacts of tailpipe emissions
DT8	
DT9	
DT10	Support control of aquatic invasive species
DT11	Dod to proportion and lost time for driver
DT12	הבעועב נטווופינוטו מווע וסגר נוווופ וטר ערועבוז.
NT12	Reduce urban truck congestion and lost time for
U I J	drivers.
DT14	Cost savings
DT15	Reduction of noise and criteria pollutants.

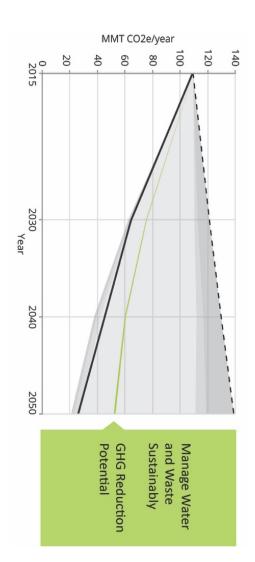

6.6 Reduce Vehicle Miles Traveled

VMT9	VMT8	VMT7	VMT6	VMT5	VMT4	VMT3	VMT2	VMT1	Ref#	
Build and maintain safe, resilient, and accessible active transportation infrastructure.	Plan, design, and maintain roadways and corridors to benefit all road users by investing in safe and accessible bike and pedestrian infrastructure.	Expand transit-supportive technologies to promote ridership through seamless payment and wayfinding	Modernize the region's commuter and freight rail systems through upgrades to signals, switches, and scheduling, and other investment.	Enhance transit service frequency, reliability, and accessibility through capital projects that implement bus priority zones, regional rail service, other urban rail efficiencies, and ADA-compliant stations.	Build mixed-use transit stations that integrate public, commercial, and/or residential space with transportation infrastructure	Pursue infill development with a focus on expanding housing in job rich locations	Promote multi-family housing development near transit stations, employment, and along transit routes.	Prioritize transit-oriented development and transit- supportive development.	Strategy	BARRINGTON
	đ	Enabling		High	Low	Medium		5	GHG Reduction Potential	
Local, county, state governments, transit agencies	Local and state governments	Transit agencies, local governments	Transit agencies, rail, local and state governments	Local, state governments, transit agencies		developers	Local government, transit agencies,		Key implementers	
	0-5+ yrs		2-4 yrs		0-5 yrs	2-4 yrs	0-9+ YI s		Timeline Scale	1
	Local, regional		Regional	Local, regional	Regional	Local, regional	Local	Local, regional	Scale	
	Existing		Coordination across jurisdictions	Existing	Existing and new municipal ordinance		Existing		Authority to Im plem ent	
Road safety and reliability by mode, and active transportation mode share, sidewalk network completeness, pedestrian safety, miles of bike lanes, miles of sidewalks	Road safety and reliability by mode, and active transportation mode share, adoption of ADA transition plans, sidewalk network completeness, pedestrian safety, adoption of complete streets plans, miles of bike lanes, miles of sidewalks	Transit supportive technology implemented, customer-facing transit tracking, customer-facing integrated payment system	Improved efficiency and on-time performance	Transit ridership, number of transit vehide revenue hours and miles, proportion of on-time trips, transit speed, number of ADA-compliant transit stations	Construction of mixed-use transit stations	Infill development projects in job rich locations	Development and preservation of multi-family Prioritize investme housing near transit stations and routes; employers increase affordable and job opportunities near transit stations housing and serve l	Density and walkability near transit service, establishment of new, transit ridership on existing routes	Performance Indicators	
Prioritize investment to serve DACs	Provide safe and accessible transportation for all.	Provide tools and messaging in all languages and formats.	serve DACs	Prioritize investment to	Prioritize investment to increase affordable housing and serve DACs	Prioritize investment to serve DACs	Prioritize investment to s increase affordable housing and serve DACs	Prioritize investment to serve DACs	LIDAC Consider at ions	/

	Strategy Encourage walking, biking and transit use through	GHG Reduction Potential Combined	GHG Reduction Potential Key implementers Local governments, Combined transit agencies,	Timeline Scale	Scale	Authority to Implement	Performance Indicators
VMT10	Encourage walking, biking and transit use through education, incentives, and collaboration.		school districts, employers	0-5+ yrs Local	Local	Existing	ing
VMT11	Establish a regional network of mobility hubs and VMT11 expand shared micromobility and electric micromobility systems.	Low	Local and county government, transit 2-4 yrs agencies		Regional	Exi	Share of the region's population with access to Consider DAC personance micromobility options, share of transit stations safety needs. Bala with last-mile transportation options, creation of e- pedestrian safety. mobility rebate programs mobility rebate programs
VMT12	Strategically manage parking policies to promote active and public transportation.	Medium	Local government, developers, businesses	0-2 yrs	Local	Mu	Municipal ordinance
VMT13	Implement transportation demand management strategies that discourage single occupancy vehicle (SOV) travel and ownership and encourage public transit and active transportation.	High	Local and state governments, transit agencies, regional organizations	5+ yrs	Local, regional	Exi	Existing

Ref# Co-benefits

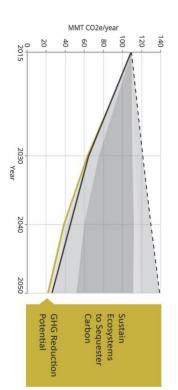
1017	
VMT1	Development of more compact, accessible neighborhoods; community cohesion strengthened: burden of owning and
VMT2	maintaining personal vehide lessened
VMT3	Greater development density. Improve access to jobs.
VMT4	Increase ridership. Improve walkability and community vitality.
VMT5	Reduced traffic congestion; improved air quality; improved access to economic opportunity through greater mobility
VMT6	Improved safety and efficiency. Reduce travel delays.
VMT7	Increase ridership
VMT8	
VMT9	Safe active transportation; connected communities; reduced
VMT10	infrastructure demands for personal vehides
VMT11	
VMT12	Reduced use of personal vehicles. Increased active
VMT13	transportation


Chicago MSA PCAP 3/1/2024

SUST

6.7 Manage Water and Waste Sustainably

Ref #	Ref # Strategy W1 Capture biogas and convert to energy.	GHG Reduction Potential		iments,	iments,	Timeline Scale iments, 1-5 yrs Local, regional	Timeline Scale Authority to Imments, 1-5 yrs Local, regional Existing
	Capture biogas and convert to energy. Eliminate fugitive methane emissions from transmission industrial processes, and from commercial and household use of natural gas.	Medium	Local and state governments, POTW, waste industry Local, county, and state governments, energy industry	1-5 yrs 0-5+ vrs	nal	Existing Federal, state	Volume of methane captured. Volume of energy produced. Emissions control technologies implemented, pipelines upgraded or replaced. Reduction of methane emissions
W3	Increase composting and biological treatment of waste. Utilize energy and biosolid by-products.	Low	Local governments, waste industry		Local	Existing	Volume of utilized
W4	Support circular economies.	Enabling	Local, county and state governments, private sector				Landfill diversion, production of longer lasting goods
W5	Reduce demand for building materials through material efficiency, longevity, and re-use.		Local, county and state governments, private sector	0-5y rs		Existing and new local ordinance	
W6	Increase the volume of waste that is recycled and composted.		Local, county, and state governments, waste industry, private sector, constituents				
W7	Reduce energy needed to deliver safe drinking water and shift operations to clean energy sources.		Local governments, water utilities.) 1	Local, regional	n	
W8	Reduce energy needed to manage wastewater and shift operation to clean energy sources.		Local governments, POTW	2-2 Also		EXISTIL	Efficiency of wastewater processing Reduce energy costs and household and conveyance. Proportion of clean utility burden. Create clean energy energy supply. jobs for DACs.
6M	Encourage water conservation.		Local governments, water utilities, non-profits.	0-5y rs			
W10	Benchmark water and energy use for commercial and residential properties.		Local, county, and state governments, water and electric utilities	2-5 yrs		Existing and new local ordinance	Adoption of water/energy nexus benchmarking.


	Co-benefits Reduced methane gas emissions.
TAA	Displacement of fossil fuels
W2	Reduced methane gas emissions
ε/v/	Reduced methane gas emissions. Enriched
CAA	landscapes
W4	Reduced embedded energy from
i	production, transport, and disposal of
¥۶	materials; reduced persistent waste like
	plastic; value from waste stream and
M6	operations captured; household budgets
	stretched through smart purchasing
W7	
8M	Dodinod long torm opportional posts
6M	הפטערבע וסווּצַ-נפוווו סטפו מנוסוומו נטטנט.
W10	

SUSTAIN ECOSYSTEMS TO SEQUESTER CARBON

6.8 Sustain Ecosystems to Sequester Carbon

	Co-benefits
SQ1	Stormwater managed sustainably; pollinator
2	and wildlife habitat supported; quality open
ZNS	space encourages active transportation and
SQ3	lifestyles
	Improved air quality; cooling shade mitigates
	heat islands; reduced cooling energy
SQ4	demands; enhanced livability
SQ2	Clean water; healthy ecosystems

SQ5	SQ4	SQ3	SQ2	SQ1	REF#	
Preserve soil through low-impact development and restore soil integrity.	Encourage citizen tree stewardship.	Plant trees and sustain the urban forest.	Encourage property owners to install and maintain sustainable and native landscapes.	Increase protected lands and restore and manage public landscapes to optimize ecosystem services and support biodiversity.	#Strategy	
		Sequestration			GHG Reduction Potential	の時間の
State, county and local governments, POTW, developers	Local governments and non-profits	Local, county, and state governments, property owners, non-profits	OW HELS	Local, county, and state governments, property 0-5 yrs	Key im plem enters	
0-5 yrs	0-2 yrs			0-5 yrs	Timeline Scale	金麗麗
Local	Local Regional, local		Scale	深刻		
Local, county ordinance		Existing		Existing. Local action to acquire lands	Authority to Implement	の時に追い
Soil health	Vitality and diversity of the urban forest		Ecological health of public and private open space	Existing. LocalQuantity and quality of public and/or protected openaction tospace. Size and quantity of conservation easements.acquire landsQuantity of restored land/open space.	Performance Indicators	
Remediate contaminated soils and restore nature to sites in vulnerable communities.	communities.	Sustain tree canopy and gardens for desired cooling benefits in vulnerable		Maintain accessible open space to invite safe and healthful activity.	UDAC Considerations	

7 Low Income Disadvantaged Communities Benefits Analysis

This section addresses low-income and disadvantaged communities (LIDACs) in the Chicago MSA. Identifying LIDACs is a critical first step to ensure that the communities that disproportionately face climate, economic, and environmental burdens will receive needed benefits from PCAP implementation. The LIDAC identification and mapping was completed by CMAP.

7.1.1 Identify Chicago MSA LIDACs

To identify low-income and disadvantaged areas in the Chicago MSA, CMAP used the <u>Climate and</u> <u>Economic Justice Screening Tool</u> (CEJST) and the EPA's <u>Environmental Justice Screening and Mapping</u> <u>Tool</u> (EJScreen). These tools identify LIDACs by assessing indicators for categories of burden: air quality, climate change, energy, environmental hazards, health, housing, legacy pollution, transportation, water and wastewater, and workforce development. Following federal practice, CMAP identified any census tract identified as disadvantaged in CEJST and/or any census block group that is at or above the 90th percentile compared to the nation and/or state for any of EJScreen's supplemental indexes. Each of the identified tracts and block groups that meet or exceed these thresholds is defined as a low-income and disadvantaged community in the Chicago MSA.¹⁸ Additional details about the data resources used to identify the low-income and disadvantaged communities are provided in *Appendix D. Appendix E* is the complete list of LIDAC census blocks in the Chicago MSA with each census block group identified using their U.S. Census Bureau block group identification number and includes their corresponding municipal and county location(s).¹⁹

Figure 1 maps the census block groups that meet this definition in the Chicago MSA. Overall, there are 2,881 census block groups identified as LIDACs in the Chicago MSA. Approximately 39 percent of the total MSA population (3,677,911 of approximately 9.4 million total) lives in areas identified as low income and disadvantaged communities. There are LIDAC block groups in each county, with 2,743,455 people living in LIDAC block groups identified in Cook County, Illinois alone.²⁰

¹⁸ CMAP used the U.S. EPA Inflation Reduction Act Disadvantaged Communities Map which combines CEJST and EJScreen Supplemental Indexes into one footprint for relevant IRA programs and analyses. Available at: https://www.epa.gov/environmentaljustice/inflation-reduction-act-disadvantaged-communities-map ¹⁹ Some census block groups span multiple municipal jurisdictions.

²⁰ A note on Newton County, Indiana: Newton County contains only four, very large census tracts, with a low population (the July 2022 estimate was 13,823). The four tracts are included as disadvantaged because of a mix of CEJST's housing, transportation, health, and workforce development burdens.

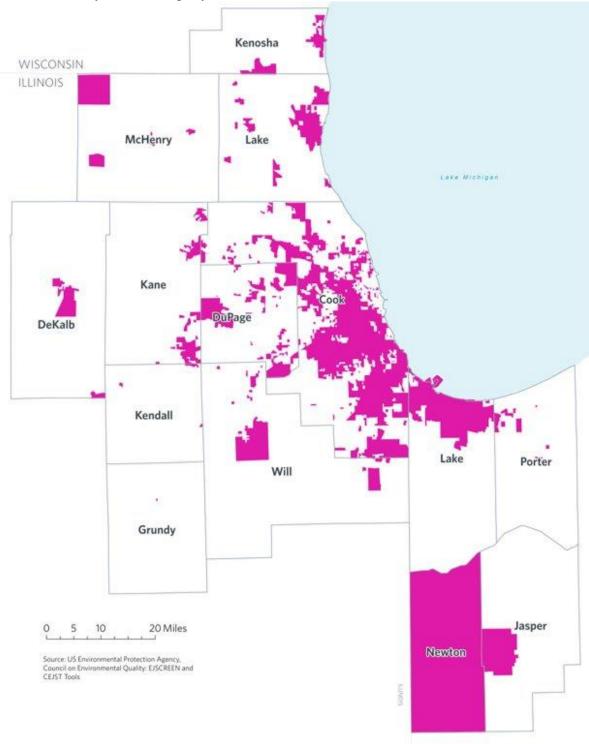


Figure 1. Low-income and disadvantaged communities in the Chicago metropolitan statistical area, defined by CEJST and EJScreen by census block groups

Source: CEJST, November 2022, and EJScreen, June 2023, via IRA Disadvantaged Communities Map

7.1.2 LIDAC Engagement in Climate Action Planning

The Metropolitan Mayors Caucus serves as a convening and coordinating council of governments for the 275 municipalities throughout northeastern Illinois. Caucus members include all municipalities in Cook, DuPage, Kane, Kendall, Lake, McHenry and Will counties and the City of DeKalb in DeKalb County. This 7-county+ service area encompasses 97% of the census tracts identified as LIDAC.

As such, the Caucus relied heavily on participation of its LIDAC member communities to provide meaningful engagement in the PCAP process. Time constraints and administrative barriers related to subawards for NIRPC prevented new, meaningful engagement of the remaining 4% of LIDACs, especially in Indiana and Wisconsin and Grundy County in Illinois. More extensive meaningful engagement across the MSA is planned for the duration of the CPRG planning process.

The Caucus' representative leadership fosters a spirit of mutual trust and collaboration. The Executive Board of the Caucus is comprised of mayors appointed by each of 9 sub-regional councils of governments and the City of Chicago. These mayors, democratically elected by their constituents, are then selected by their sub-regional council of governments (e.g. South Suburban Mayors and Managers Association) to represent their sub-region on the <u>Caucus Executive Board</u>. Ten Executive Board Members and Directors (55%) represent LIDAC communities including Batavia, Burr Ridge, Chicago, Darien, Hazel Crest, Hillside, Northlake, Palos Hills, Richton Park, and University Park. The Executive Board has been meaningfully engaged in the development of the Caucus' 2021 Climate Action Plan for the Region and the PCAP. This collaborative leadership body recognizes community values, concerns, practices, and the local norms and history that LIDAC members are uniquely able to provide.

The Caucus further engages LIDAC communities within 7-county+ metro region through its Environment Committee which is open to all Caucus member communities. The Environment Committee engaged in the PCAP through discussion and facilitated participation (using the *Mentimeter* engagement tool) at two Environment Committee meetings in May 2023 and January 2024. See Stakeholder Engagement *Section 1.3.3* above. All Caucus member municipalities were invited to the Climate Townhall in December 2023 to provide input into the PCAP. NIRPC and CMAP extended invitations to additional LIDAC communities and stakeholders beyond the Caucus' reach.

The Metropolitan Mayors Caucus leads the <u>Greenest Region Compact</u> (GRC), the largest regional sustainability collaborative for municipalities in the U.S. The GRC is a set of consensus sustainability goals developed with consideration of the needs and capabilities of all municipalities in the Chicago metro region. To date, 153+ municipalities and 5 counties have formally endorsed the goals of the GRC. Of these, at least 61 are designated LIDAC. This broad consensus gives the Caucus the ability to understand and address the needs and desired outcomes of LIDAC communities, relative to sustainability and equitable climate action.

Finally, the 2021 Climate Action Plan for the Chicago Region (CAP) was crafted with input from 175 organizations. Fifty-three of those organizations were municipalities, and sixteen of those were municipalities identified as LIDAC. Over the sixteen-month period (2019-2021) of CAP development there were 20 meetings and events, which allowed for meaningful engagement of low income and disadvantaged communities. See *Appendix G*. Robust community engagement by the City of Chicago in the development of their 2022 Chicago Climate Action Plan also enriched our understanding of LIDAC community priorities and needs.

7.1.3 Estimate potential benefits of GHG emission reduction measures to LIDACs

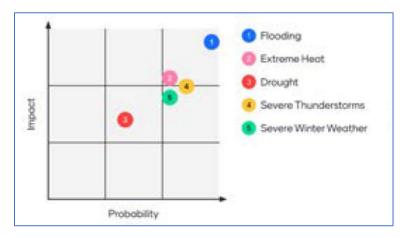
Paired with each strategy of the Complete List of GHG Reduction Strategies is information relative to the needs and opportunities for LIDAC. The "LIDAC Considerations" column notes planning and implementation approaches that could maximize equitable benefits to LIDAC communities and minimize disbenefits. The "Co-Benefits" column identifies benefits that could be realized by LIDAC from equitable implementation of that strategy. Both LIDAC Considerations and Co-Benefits are paired with every Priority GHG Reduction Strategy and Additional GHG Reduction Strategies. LIDAC benefits were key decision factor for selecting Priority GHG Reduction Strategies.

7.1.4 LIDAC and Climate Impacts and Risks

A comprehensive climate risk and vulnerability assessment was done for the 2021 Climate Action Plan for the Chicago Region.

This was undertaken in two comprehensive steps. First a set of climate known concerns were compiled from literature reviews. *See Appendix F.*

Table 1. Vulnerability and risk scoping for the Chicago region based on literature review Climate-related hazards are ranked on a scale of (1-5) indicating probability and potential consequences. The two are multiplied to assign a risk score.


Source: Buro Happold

Climate-Related Hazard	Probability	Consequence	Risk
Extreme Heat	3	3	9
Drought	2	3	6
Severe Thunderstorms	2	2	4
Flooding	3	3	9
Severe Winter Weather	2	2	4

This assessment considered risks and impacts to vulnerable populations. The tool used in the PCAP to identify low income and disadvantaged communities (LIDAC) were not available in 2021 at the time of CAP publication.

To complement climate science assessments, a live survey was done (on May 22, 2020) to gather stakeholder perceptions about the probability and potential impacts from climate-related hazards. Twenty-eight individuals including representatives from disadvantaged communities participated in this ranking exercise.

Table 2: Aggregated votes of climate adaptation workshop who assessed the probability and potential impacts of climate-related hazards.

8 Intersection with Other Funding Availability

The federal Bipartisan Infrastructure Law (BIL) and the Inflation Reduction Act (IRA) will make the largest investment in climate action in U.S. history. Climate Pollution Reduction Grant Implementation funds drive the development of this PCAP and spark innovative proposals to implement its strategies.

The IRA authorizes Direct Pay, a new way for non-profit and government entities to access federal investment previously delivered only in the form of tax credits for businesses and individuals. At the same time, the Illinois Climate and Equitable Jobs Act (CEJA) provides a pathway to a clean energy future, and funding to begin the journey. CEJA enables Illinois utilities to invest in clean energy technologies, grid resilience and electrification.

The dynamic nature of these new funding opportunities means that tracking and responding to them can prove challenging for climate project planners. The PCAP organizes GHG Reduction Strategies organized by Objectives. With the aim of accomplishing these objectives, this section provides an overview of intersecting funding sources to complement CPRG investment.

8.1 Potential funding and resources

Objective 1: Demonstrate leadership to reduce emissions

As this mitigation objective focuses primarily on administrative and policy actions, many do not require outside funding, but will require dedicated staff resources to implement. Technical assistance and advisory support could facilitate implementation. The <u>Illinois Sustainable Technology Center</u>, affiliated with the University of Illinois, manages a technical assistance program that focuses on operational sustainability. <u>CMAP</u> and the <u>Regional Transportation Authority</u> (RTA) also maintain joint technical assistance programs that provide consultant and in-house support for local and regional planning projects, including grant readiness and capacity building projects. At the national level, the <u>Local</u>

<u>Infrastructure Hub</u> provides municipalities with the resources and expert advice they need to access federal infrastructure funding through programs such as grant application Bootcamps.

Academic and non-profit organizations such as the <u>University of Illinois Extension</u> and the <u>Center for</u> <u>Neighborhood Technology</u> also offer extensive informational and educational resources that are valuable for shaping conversations with residents, staff, and elected officials. Indiana University's <u>Environmental Resilience Institute</u> offers climate planning technical assistance to Indiana jurisdictions.

Objective 2: Decarbonize Energy Sources

The U.S. Department of Energy (DOE) provides a number of funding sources to decarbonize energy sources, including the <u>Long-Duration Energy Storage Demonstrations Program</u>, the <u>Transmission</u> <u>Facilitation Program</u>, and <u>Communities LEAP (Local Energy Action Program)</u>.

The U.S. Department of the Treasury offers a variety of <u>tax credits</u> intended to support the development of clean energy projects, and the U.S. Department of Agriculture (USDA) is available to support building retrofits and energy projects in participating communities.

At the state level, the Illinois Environmental Protection Agency (IEPA) manages the <u>Clean Energy</u> <u>Innovation Fund</u>, which can be used to fund "high-potential, early-stage Illinois-based cleantech companies." IEPA also administers the formula funding for the <u>Energy Efficiency and Conservation Block</u> <u>Grant</u> in Illinois, which provides funding for energy planning projects. The Illinois Department of Commerce and Economic Opportunity oversees several programs created through the Climate and Equitable Jobs Act, including the <u>Equitable Energy Future Grant program</u>, which can be used for renewable energy and energy efficiency projects primarily benefiting low-income communities.

Objective 3: Optimize Building Energy

Funding sources for building efficiency are substantially similar to those focused on decarbonizing energy sources. The IEPA <u>Energy Efficiency and Conservation Block Grant</u> provides funding for building decarbonization in addition to energy planning. The U.S. DOE <u>Property Assessed Clean Energy Program</u> can also be used for both efficiency retrofits and on-site energy projects for residential and commercial buildings. Of note, this program often requires enabling state legislation and authorization from local governments.

The DOE offers several funding programs for building decarbonization such as <u>Home Efficiency Rebates</u> and the <u>Weatherization Assistance Program</u>. The U.S. EPA and Department of Housing and Urban Development (HUD) also offer a variety of funding programs to support building decarbonization through retrofits, efficiency programs, and other investments, such as U.S. EPA's Reducing Embodied Greenhouse Gas Emissions for Construction Materials and Products grant and HUD's <u>Green and Resilient</u> <u>Retrofit Program</u>.

At the state level, several grant programs exist to fund building decarbonization, such as the <u>Community</u> <u>Development Block Grant Housing Rehabilitation Program</u> at Illinois Department of Commerce and Economic Opportunity, the <u>Energy Efficiency Trust Fund Grant Program</u> at IEPA, and <u>Illinois Solar for All</u> through the state DOE. There are a variety of small-scale, local programs as well, but these are generally programs designed to be applied for directly by residents and businesses to receive assistance from the municipality for individual projects. In Illinois, ComEd offers a robust energy savings program that supports energy efficiency and beneficial electrification goals established by CEJA. ComEd's Smart Energy <u>Marketplace</u> offers a wide range of incentives and services to help customers optimize building energy through energy efficiency and electrification. Some of these services include free home energy assessments, rebates on energy efficiency appliances, and discounts on efficient heating and cooling equipment. Public sector customers may access facility assessments and rebates through ComEd's Commercial and Industrial programs. Dedicated funding and resources are available to help reduce household energy burden of income qualified customers in LIDACs as well, including free energy-saving kits, weatherization improvements, and the Whole Home Electric program for qualifying customers.

Objective 4: Implement Clean Energy Policies

Several of the measures included in this mitigation objective focus on administrative actions, such as local and state policies, energy planning, and streamlining processes. These actions have lower implementation costs but may benefit from technical assistance provided by CMAP, the Caucus, the Interstate Renewable Energy Council (IREC), Slipstream, the Midwest Energy Efficiency Alliance (MEEA), and other organizations.

In August of 2023, Elevate, the Illinois Green Alliance, and ComEd launched the <u>Building Energy</u> <u>Resource Hub</u> to provide training and advisory services to building professionals. The Hub will support building owners and developers in areas such as compliance with more efficient codes or taking on building electrification.

The IRA provides up to \$1 billion for states and units of local government with the authority to adopt building energy codes to adopt and implement the latest building energy codes, zero energy building codes, or equivalent codes or standards. Out of the \$1 billion, there is \$530 million available through the U.S. DOE Assistance for the Adoption of the Latest and Zero Building Energy Codes funding opportunity.

Objective 5: Decarbonize Transportation

The federal government has various competitive funding opportunities to support the transition from fossil fuels in the transportation sector. U.S. EPA manages a number of programs focused on freight decarbonization, such as <u>Clean Ports</u> and <u>Clean Heavy-Duty Vehicles</u>. The U.S. Department of Transportation (USDOT) offers funding programs targeting all aspects of the transportation sector including the <u>Low or No Emissions Grants for Buses and Bus Facilities Program</u>, <u>Port Infrastructure Development Program</u> and <u>Infrastructure for Rebuilding America Grants</u>, the <u>Charging and Fueling Infrastructure Discretionary Grant Program</u>, and the <u>National Electric Vehicle Infrastructure Program</u>. The Infrastructure Investment and Jobs Act also included funding for a wide range of transportation areas discussed at length in the act's guidebook.

Many federal funding programs are administered at a state, regional, and local level. Within the Chicago metropolitan statistical area, <u>CMAP</u>, <u>NIRPC</u>, and <u>SEWRPC</u> are responsible for programming the Congestion Mitigation and Air Quality Improvement Program, the Carbon Reduction Program, the Transportation Alternatives Program, and the Surface Transportation Program within their respective jurisdictions. Additional information about these programs is available on each agency's website.

ComEd recently announced new <u>EV rebates</u> for residents, businesses, and public sector customers. Residents can receive rebates for purchasing and installing at-home chargers, with the highest rebates available for income-eligible customers. For businesses and public sector customers, ComEd is offering rebates for purchasing EVs and for installing make-ready infrastructure. Other rebates available for vehicles include <u>residential rebates</u> on new or used EVs through Illinois' CEJA and the <u>Commercial Clean</u> <u>Vehicle Credit</u> for businesses and tax-exempt organizations that purchase EVs.

The Caucus supports municipalities and counties in the ComEd territory to become EV Ready Communities through the <u>EV Readiness Program</u>. Working in cohorts, communities receive no-cost technical assistance and work collaboratively to seek funding for EVs and EV charging infrastructure.

Objective 6: Reduce Vehicle Miles Traveled

Similar to the funding sources for decarbonizing transportation, this mitigation area has competitive funding opportunities from several federal departments. U.S. DOT offers transit-related funding through programs like the Low or No Emission Vehicle Program for buses and bus facilities and the Transit-Oriented Development Pilot Program. The U.S. Federal Transit Administration has the Integrated Mobility Innovation Program and All Stations Accessibility Program, which aim to make transit a more accessible, efficient, and innovative travel mode. The Infrastructure Investment and Jobs Act also includes other funding opportunities for transit and are discussed at length in act's guidebook.

Many of the federal transportation programs administered at the state, local, and regional level detailed in the Decarbonize Transportation mitigation objective can also be used to support vehicle miles traveled reduction efforts. These programs include Congestion Mitigation and Air Quality Improvement Program, the Carbon Reduction Program, and the Transportation Alternatives Program. Motor fuel tax funds may also be used to design and construct roadways that are safe and accessible for all road users, allowing for alternatives to driving. In northeastern Illinois, CMAP and RTA's joint technical assistance program can also assist with these efforts.

The <u>Active Transportation Alliance</u> offers timely information and technical assistance to jurisdictions seeking grant funding for active transportation projects.

Objective 7: Manage Water and Waste Sustainably

U.S. EPA maintains several funding sources for waste and wastewater projects, include <u>Solid Waste</u> <u>Infrastructure for Recycling Grants; Embodied Carbon in Construction Materials Grants, Technical</u> <u>Assistance, and Labeling Program</u>; and the <u>Clean Water State Revolving Fund Program</u>. USDA also administers numerous relevant programs, including <u>Composting and Food Waste Reduction Grants</u>; <u>USDA Rural Utilities Service, Water, and Wastewater Loan/Grant Program</u>; and the <u>Solid Waste</u> <u>Management Rural Development Grants</u>. HUD Community Development Block Grants may also be used for public facility construction and improvement projects such as water and sewer facilities.

At the state level, IEPA's <u>Public Water Infrastructure Plant Efficiency Program</u> and <u>Public Water Supply</u> <u>Energy Efficiency Grant Program</u> are great resources for water-focused projects. ComEd, Northeastern Illinois' primary electricity provider, also offers facility assessments for residential, commercial, and public sector facilities.

Site scale green infrastructure projects that reduce the quantity of stormwater entering combined sewer systems also play an important role in lowering emissions by reducing demand on wastewater treatment facilities. Funding opportunities for these projects are discussed in the sustain ecosystems to sequester carbon mitigation objective.

Objective 8: Sustain Ecosystems to Sequester Carbon

USDA offers many grants and funding programs to support green infrastructure, open space, and ecosystem services under the umbrella of the <u>Natural Resources Conservation Service</u>, including the <u>Regional Conservation Partnership Program</u>, the <u>Conservation Stewardship Program</u>, and <u>Agriculture</u> <u>Conservation Easement Programs</u>.

At the state level, the Illinois Department of Natural Resources manages <u>various grant programs</u> such as the <u>Open Space Lands Acquisition and Development Program</u>. At the local and regional level, several private and non-profit organizations maintain funding and volunteer programs to support open space, including USDA <u>Urban Forestry Grants</u> (administered by the Morton Arboretum), the Openlands <u>TreeKeepers Program</u> and <u>TreePlanters Grant</u>, and the <u>ComEd Green Region Grant</u>. The Chicago Region Tree Initiative maintains a helpful <u>grants hub</u> that tracks grants available for urban forestry and green infrastructure projects as well. Local and county referenda for open space acquisition and maintenance have historically provided the bulk of funding for open space preservation.

9 Next Steps

The work to prepare the Priority Climate Action Plan for the Chicago Metropolitan Statistical Area heralds an exciting new era of broad collaboration to accelerate innovation, investment, and effective climate action. Our hurried work towards these critical CPRG program deadlines has brought together new partners across jurisdictions and state lines to think big and quickly aim for transformation. The purpose of the PCAP is to prepare the Chicago MSA to propose big, transformative projects that will implement our chosen Priority GHG Reduction Strategies. We are ready to work together to stem rising greenhouse gas emissions causing global climate change.

The immediate next step is for these activated civic leaders to compile their project ideas into winning proposals that will demonstrate the ability to significantly reduce GHG emissions, transform operations and behaviors, reap benefits for low-income and disadvantaged communities, and contribute to the equitable growth of our region. As a region, we hope for strong federal investment that capitalizes on our local talent, Midwestern sensibility and imagination, and leverages our own local investment.

Following CPRG Implementation grant submissions, the Caucus, NIRPC and our constituents and stakeholders will support CMAP is creating a robust Comprehensive Climate Action Plan for the Region (CCAP) in June 2025. We will more earnestly seek to engage LIDAC communities and deepen our climate commitments.

This Priority Climate Action Plan underscores the need for urgent coordinated action to equitably mitigate climate change. Our regional culture of cohesion and collective expertise positions us well to meet this challenge. All are invited to join us.

10 Appendix A: Priority GHG Reduction Strategy Quantification Methodology

This section outlines the methodology used by CMAP, Cook County, ComEd, Lake Michigan Air Directors Consortium, and others to calculate the greenhouse gas emission reduction potential of priority climate action plan measures. The *Objectives, Priority GHG Reduction Strategies*, and *Measures* are listed below. For each one, the measure and interim target year are identified.

10.1.1	Decarbonize	Energy Source -	DE2
--------	-------------	-----------------	-----

Objective	Priority GHG Reduction Strategy	
Decarbonize Energy Sources	Increase renewable energy supply and energy storage capacity for residential, commercial, municipal, Institutional, and industrial electricity use.	

Measure 1: Generate 40 percent of electricity from renewable sources by 2030.

Quantifier: CMAP

Champion: Kane County

Estimated reduction: 23.11 MMT CO2e annually in 2030

Reference for establishing the measure: The State of Illinois adopted the <u>Climate and Equitable Jobs Act</u> in 2021. The Act set a long-term target of achieving a carbon-free grid by 2045. The Act also called for the state to generate 40 percent of its electricity from renewable (non-nuclear) sources by 2030 and 50 percent by 2040. The CEJA target is currently an Illinois target. This plan expands that target to include portions of the MSA in Indiana and Wisconsin.

Calculation Method Description: The emissions and generation resource integrated database (eGRID) is a comprehensive source of data from the EPA on the environmental characteristics of electric power generation in the United States. The data includes emissions, emission rates, generation, resource mix, and many other attributes that were useful in this policy analysis exercise. The entire Chicago MSA region falls within the RFCW eGRID region.

For this analysis, the 2020 RFCW eGRID data were used to understand the CO2e reduction benefits, compared to the baseline, of generating 40% of electricity for the entire MSA region from renewable sources by 2030. To do this, the resource mix of the 2020 eGRID RFCW data would be updated to reflect the 40% renewable electricity goal. 2030 electricity usage was also necessary for this analysis. The NREL and DOE tool, SLOPE was used to get 2030 electricity usage, by county, for the entire MSA region. SLOPE has energy usage projections for every county in the United States for all years through 2050. After gathering 2030 electricity usage by county, these data were input into the EPA Local Greenhouse Gas Inventory Tool. This tool allows a user to calculate electricity emissions based on existing eGRID rates or based on custom rates. For the business-as-usual scenario, the 2030 Chicago MSA electricity usage data was entered into this tool and emissions were calculated based on the 2020 eGRID rates based on increases to Solar and Wind electricity generation to achieve the 2030 40% renewable energy goal. The same 2030 Chicago MSA electricity usage data was entered into this tool and emissions were calculated has entered into this tool and emissions based on the 2030 40% renewable energy goal. The same 2030 Chicago MSA electricity usage data was entered into this tool and emissions were calculated has entered into this tool and emissions were calculated has entered into this tool and emissions were calculated has entered into this tool and emissions were calculated based on the 40% renewable energy goal resource mix. Table 1 provides the results of the analysis.

Table 1. Renewable energy GHG reduction measure quantification.

Scenario	CO2 (in MMT CO2e)	CH4 (in MMT CO2e)	N2O (in MMT CO2e)	Total (in MMT CO2e)
Business As Usual Scenario	44.24	0.11	0.14	44.49
40% Renewable Energy Scenario	21.15	0.09	0.13	21.38
2030 CO2e Reduction (MMT CO2e)	23.09	0.01	0.01	23.11

DE2 Measure 2

Measure 2: Increase on-site renewable energy by installing solar arrays at 20% of industrial manufacturing, including metal and food and beverage manufacturing facilities.

Champion and Quantifier: Cook County

Estimated reduction: 0.057 MMT CO2e annually in 2030

Scope: Cook County

Calculation Method Description: Per ComEd energy efficiency assessment reports from 2023 at 2 food and beverage manufacturers and 1 metal finisher site in Suburban Cook County, a single solar panel may save .29 mt CO2e/yr. An average solar array on an industrial facility may save an average of 1,236,930 kWh/yr which is 864 mtco2e / yr. Per 2020 NEI data, there are 303 total food and beverage and metal manufacturers in the Chicago MSA. 864 mtco2e extrapolated onto 20% of those sites (roughly 61 facilities). Due to limited data sample size and time constraints, this data should be used as a rough sample size of industrial facilities capable of installing solar. ComEd Energy Efficiency Industrial Assessment reports from 2023 - Suburban Cook County.

10.1.2 Optimize Building Energy - BE1

Objective	Priority GHG Reduction Strategy		
Optimize Building Energy	Engage <i>residential</i> utility customers to optimize building <i>efficiency</i> leveraging residential energy assessments, energy efficiency rebates, incentives, tax credits and weatherization, housing rehab, and energy assistance programs.		

Measure 1: Assess residential homes for cost-effective energy efficiency measures, including weatherization and building shell improvements, energy-efficient HVAC and appliances and other measures.

Quantifier: ComEd

Estimated reduction: 0.41 MMTCO2e cumulative from 2024 to 2030

Scope: ComEd Territory

Calculation Method Description: Energy savings are based on ComEd 2022 program year results; verified by ComEd Program Independent Evaluator consistent with the Illinois Technical Reference manual (TRM).

10.1.3 Optimize Building Energy - BE2

Objective	Priority GHG Reduction Strategy

	Engage residential utility customers to electrify space and
	water heating leveraging residential energy assessments,
	rebates, incentives, tax credits and weatherization and energy
Optimize Building Energy	assistance programs.

Measure: Replace existing fossil-fueled furnaces with more efficient heat pumps

Quantifier: ComEd

Estimated reduction: 0.16 MMTCO2e from 2024 to 2030

Scope: ComEd Territory

Calculation Method Description: Energy savings are based on ComEd 2022 program year results; verified by ComEd Program Independent Evaluator consistent with the Illinois Technical Reference manual (TRM).

10.1.4	Optimize	Building	Energy - BE3
--------	----------	----------	--------------

Objective	Priority GHG Reduction Strategy	
Optimize Building Energy	Engage <i>commercial, institutional, and industrial</i> utility customers to optimize building efficiency leveraging tools and programs such as facility assessments, energy management, retro commissioning, demand response, performance contracting, energy efficiency rebates, incentives, tax credits, and PACE financing.	

Measure: Replace 30% of fossil fuel boiler and process heating equipment/processes with electric, hydrogen, or other non-GHG emitting based alternatives for all low and medium heat processes by 2030

Quantifier: CMAP

Champion: Cook County

Estimated reduction: 4.93 MMT CO2e annually in 2030

Scope: Chicago MSA

Measure Justification: Cook County identified this as a critical strategy to reduce industrial sector GHG emissions.

Calculation Method Description: Electrification and hydrogen of low and medium heat processes were measured in the Rocky Mountain Institute Energy Policy Simulator tool. This tool assesses a variety of climate mitigation policies at the state level and calculates a reduction in million metric tons/year CO2e emissions from the policies in question.

This 30% improvement rate by 2030 was applied to all industrial subsectors, with the exception of coal mining, and for all three states within the Chicago MSA, which produced the reduction in MMT for all three states. However, given that the Chicago MSA only encompasses portions of all three states, these reductions needed to be scaled to only incorporate the areas within the MSA region.

To scale these state totals to the MSA, the total square feet of industrial building area was collected using building data from Replica. Replica provides land use and building area data at the county level for all counties within the country. This data was collected for Illinois, Wisconsin, and Indiana, as well as for

the unique counties within the MSA in each of these respective states. These data were used to calculate the proportion of industrial building area in each state that is represented within the Chicago MSA, which acts as our scaling factor. Table 2 provides the scaled results.

Table 2. Replace 30% of fossil fuel boiler and process heating equipment with non-GHG emitting based alternatives measure quantification.

State	2030 Baseline (MMT CO2e)	2030 Baseline Scaled (MMT CO2e)	2030 Scenario 1* Scaled (MMT CO2e)	CO2e Reduction (MMT CO2e)	Percent of State Industrial Building Area in MSA
Illinois	219.1	176.1	172.2	3.94	80.4%
Indiana	185.4	13.6	12.7	0.87	7.3%
Wisconsin	111.0	3.6	3.5	0.12	3.3%
MSA Total	515.5	193.4	188.4	4.93	

*Scenario 1 represents replacement of 30% of fossil fuel boiler and process heating equipment with non-GHGH emitting based alternatives for all low and medium heat processes by 2030.

Optimize Building Energy - BE3 Measure 2

Measure 2: Increase energy efficiency of heating, cooling and ventilation, lighting, envelope, appliances, and other components by 40% by 2030.

Quantifier: CMAP

Champion: Cook County

Estimated reduction: 1.08 MMT CO2e annually in 2030

Scope: Chicago MSA

Measure Justification: Cook County identified this as a critical strategy to reduce industrial sector GHG emissions.

Calculation Method Description: Increasing energy efficiency of heating, cooling and ventilation, lighting, envelope, appliances, and other components by 40% by 2030 were measured in the Rocky Mountain Institute Energy Policy Simulator Tool. This tool assesses a variety of climate mitigation policies at the state level and calculates a reduction in million metric tons/year CO2e emissions from the policies in question.

This 40% improvement rate by 2030 was applied to all three states within the Chicago MSA, which produced the reduction in MMT for all three states. However, given that the Chicago MSA only encompasses portions of all three states, these reductions needed to be scaled to only incorporate the areas within the MSA region.

To scale these state totals to the MSA, the total square feet of industrial building area was collected using building data from Replica. Replica provides land use and building area data at the county level for all counties within the country. This data was collected for Illinois, Wisconsin, and Indiana, as well as for the unique counties within the MSA in each of these respective states. These data were used to calculate the proportion of industrial building area in each state that is represented within the Chicago MSA, which acts as our scaling factor. Table 3 provides the scaled results.

Table 3. Increase industrial energy efficiency standards measure quantification.

State	2030 Baseline (MMT CO2e)	2030 Baseline Scaled (MMT CO2e)	2030 Scenario 1* Scaled (MMT CO2e)	CO2e Reduction (MMT CO2e)	Percent of State Industrial Building Area in MSA
Illinois	219.1	176.1	175.1	0.96	80.4%
Indiana	185.4	13.6	13.5	0.08	7.3%
Wisconsin	111.0	3.6	3.6	0.04	3.3%
MSA Total	515.5	193.4	192.3	1.08	

*Scenario 1 represents a 40% increase in energy efficiency of heating, cooling and ventilation, lighting, envelope, appliances, and other components by 2030.

Optimize Building Energy - BE3 Measure 3

Measure 3: Train workforce of industry decarbonization contractors by 2030.

Quantifier: CMAP

Champion: Cook County

Scope: Chicago MSA

Estimated reduction: 0.77 MMT CO2e annually in 2030

Measure Justification: Cook County identified this as a critical strategy to reduce industrial sector GHG emissions.

Calculation Method Description: Emissions reductions resulting from a program to train a workforce of industry decarbonization contractors across the MSA by 2030 were measured in the Rocky Mountain Institute Energy Policy Simulator Tool. This tool assesses a variety of climate mitigation policies at the state level and calculates a reduction in million metric tons/year CO2e emissions from the policies in question.

This job training program to train contractors in energy-efficient products and installation practices by 2030 was applied to all three states within the Chicago MSA, which produced the reduction in MMT for all three states. However, given that the Chicago MSA only encompasses portions of all three states, these reductions needed to be scaled to only incorporate the areas within the MSA region.

To scale these state totals to the MSA, the total square feet of industrial building area was collected using building data from Replica. Replica provides land use and building area data at the county level for all counties within the country. This data was collected for Illinois, Wisconsin, and Indiana, as well as for the unique counties within the MSA in each of these respective states. These data were used to calculate the proportion of industrial building area in each state that is represented within the Chicago MSA, which acts as our scaling factor. Table 4 provides the scaled results.

State 2030 Baseline 2030 Baseline 2030 Scenario **CO2e Reduction** Percent of State (MMT CO2e) Scaled (MMT 1* Scaled (MMT (MMT CO2e) Industrial Building CO2e) CO2e) Area in MSA Illinois 219.1 176.1 175.4 0.72 80.4% Indiana 185.4 13.6 13.6 0.03 7.3% 0.02 Wisconsin 111.0 3.6 3.6 3.3% **MSA** Total 515.5 193.4 192.6 0.77 ---

Table 4. Train workforce of industry decarbonization contractors measure quantification

*Scenario 1 represents the emissions reductions associated with training a workforce of industry decarbonization contractors by 2030 throughout the MSA.

Optimize Building Energy - BE3 Measure 4

Measure 4: Improve energy efficiency standards for food and beverage and metal manufacturers by 15% by 2030.

Quantifier: CMAP

Champion: Cook County

Estimated reduction: 1.11 MMT CO2e annually in 2030

Scope: Chicago MSA

Measure Justification: Cook County identified this as a critical strategy to reduce industrial sector GHG emissions.

Calculation Method Description: The emissions reductions from implementing energy efficiency standards for food and beverage and metal manufacturers by 15% by 2030 were measured in the Rocky Mountain Institute Energy Policy Simulator Tool. This tool assesses a variety of climate mitigation policies at the state level and calculates a reduction in million metric tons/year CO2e emissions from the policies in question.

This 15% improvement rate by 2030 was applied to all three states within the Chicago MSA, which produced the reduction in MMT for all three states. However, given that the Chicago MSA only encompasses portions of all three states, these reductions needed to be scaled to only incorporate the areas within the MSA region.

To scale these state totals to the MSA, the total square feet of industrial building area was collected using building data from Replica. Replica provides land use and building area data at the county level for all counties within the country. This data was collected for Illinois, Wisconsin, and Indiana, as well as for the unique counties within the MSA in each of these respective states. These data were used to calculate the proportion of industrial building area in each state that is represented within the Chicago MSA, which acts as our scaling factor. Table 5 provides the scaled results.
 Table 5. Improve energy efficiency standards for food and beverage and metal manufacturers

 measure quantification.

State	2030 Baseline (MMT CO2e)	2030 Baseline Scaled (MMT CO2e)	2030 Scenario 1* Scaled (MMT CO2e)	CO2e Reduction (MMT CO2e)	Percent of State Industrial Building Area in MSA
Illinois	219.1	176.1	175.1	1.04	80.4%
Indiana	185.4	13.6	13.6	0.04	7.3%
Wisconsin	111.0	3.6	3.6	0.03	3.3%
MSA Total	515.5	193.4	192.2	1.11	

*Scenario 1 represents a 15% increase in energy efficiency of food and beverage facilities and metal manufacturers by 2030.

Optimize Building Energy - BE3 Measure 5

Measure 5: Replace high GWP F-gas refrigeration system with CO2 natural refrigerant system at 50% of commercial facilities.

Estimated reduction: 0.89 MMT CO2e annually in 2030

Quantifier and Champion: Cook County

Scope: Cook County

Quantification Methodology: Cook County has approximately 1000 supermarkets that on average use 4000 lbs of R404-A, which is a refrigerant that has a GWP that is twice has potent as its predecessor, R-22. R404-A is becoming the most common replacement for R-22. This methodology uses EPA Green Chill Calculator to calculate mt CO2e and assumes 1000 supermarket facilities that hold a charge of 2 tons of high GWP refrigerant with an average leak rate of 25% per year. The GWP for R-22 is 1810, however, R404-A has a charge of 3921.60. This methodology assumes complete replacement of a high GWP refrigerant based systems at supermarkets across Cook County. This number can be extrapolated into the rest of the MSA.

Optimize Building Energy - BE3 Measure 6

Measure: Replace variable speed drives on HVAC and pollution control devices at 100 food and beverage and metal manufacturing facilities.

Estimated reduction: 0.077 MMT CO2e annually in 2030

Quantifier and Champion: Cook County

Scope: Cook County

Quantification Methodology: Per ComEd energy efficiency assessment data from 2023 at multiple food and beverage and metal finishing sites, variable speed drives offer a kWh savings of 110,290 kWh or 77mt CO2e per VSD. Multiple VSDs can be used within an industrial facility. This methodology assumes 10 VSDs are installed per facility. ComEd Energy Efficiency Industrial Assessment reports from 2023 - Suburban Cook County.

Optimize Building Energy - BE3 Measure 7

Measure: Replace high GWP F-gas industrial refrigeration systems with ammonia or another natural refrigerant system at 50% of food and beverage and chemical manufacturers in Chicago MSA.

Estimated reduction: 0.023 MMT CO2e annually in 2030.

Quantifier and Champion: Cook County

Scope: Cook County

Quantification Methodology: The <u>EPA Green Chill Calculator</u> was used to calculate mt CO2e. While this calculator is meant for supermarkets, the variables used in the calculator can still be used for industrial systems. Assumes industrial chiller systems hold a charge of 4409 lbs of high GWP refrigerant, R-410A, with an average leak rate of 5% per year. The GWP for the most polluting industrial refrigerant, R-410A, is 2088. This methodology assumes complete replacement of a high GWP refrigerant based system with an ammonia based natural refrigeration system that has a GWP of 0 at 216 industrial facilities. GHG metric accounts for 50% of facilities (113) replacing systems by 2030.

10.1.5	Optimize Building En	ergy - BE4

Objective	Priority GHG Reduction Strategy
Optimize Building Energy	Engage <i>commercial, institutional, and industrial</i> utility customers to <i>electrify</i> buildings leveraging tools and programs such as facility assessments, energy management, rebates, incentives, tax credits, direct pay and PACE financing.

Measure: Retrofit existing public sector buildings with more energy efficient lighting, HVAC, and other measures.

Estimated reduction: 0.66 MMTCO2e cumulative from 2024 to 2030

Quantifier: ComEd

Champion: City of Chicago, Chicago Public Schools

Scope: ComEd Territory

Quantification Methodology: Energy savings are based on ComEd 2022 program year results; verified by ComEd Program Independent Evaluator consistent with the Illinois Technical Reference manual (TRM).

10.1.6 Optimize Building Energy - BE6

Objective	Priority GHG Reduction Strategy
Optimize Building Energy	Manage non-CO2 GHG emissions including CH4, HFC, SF6 and others through improved industrial processes, alternative solutions, efficiency, leak detection and reduction, and recovery.

Measure: Substitute F-gas refrigerants by 67% and maintain or retrofit existing equipment at all industrial facilities by 2030.

Quantifier: CMAP

Champion: Cook County

Estimated reduction: 0.94 MMT CO2e annually in 2030

Scope: Entire MSA

Measure Justification: Cook County identified this as a critical strategy to reduce industrial sector GHG emissions.

Calculation Method Description: The emissions reductions from substituting F-gas refrigerants, which have an outsized impact on CO2e emissions, by 67% by 2030 were measured in the Rocky Mountain Institute Energy Policy Simulator Tool. This tool assesses a variety of climate mitigation policies at the state level and calculates a reduction in million metric tons/year CO2e emissions from the policies in question.

This 67% reduction by 2030 was applied to all three states within the Chicago MSA, which produced the reduction in MMT for all three states. However, given that the Chicago MSA only encompasses portions of all three states, these reductions needed to be scaled to only incorporate the areas within the MSA region.

To scale these state totals to the MSA, the total square feet of industrial building area was collected using building data from Replica. Replica provides land use and building area data at the county level for all counties within the country. This data was collected for Illinois, Wisconsin, and Indiana, as well as for the unique counties within the MSA in each of these respective states. These data were used to calculate the proportion of industrial building area in each state that is represented within the Chicago MSA, which acts as our scaling factor. Table 6 provides the scaled results. Table 6. Substitute F-gas refrigerants and maintain or retrofit existing equipment at all industrial facilities measure quantification.

State	2030 Baseline (MMT CO2e)	2030 Baseline Scaled (MMT CO2e)	2030 Scenario 1* Scaled (MMT CO2e)	CO2e Reduction (MMT CO2e)	Percent of State Industrial Building Area in MSA
Illinois	219.1	176.1	176.1	0.88	80.4%
Indiana	185.4	13.6	13.6	0.04	7.3%
Wisconsin	111.0	3.6	3.6	0.02	3.3%
MSA Total	515.5	193.4	194	0.94	

*Scenario 1 represents a 67% reduction in F-gas refrigerants by 2030.

10.1.7 Decarbonize Transportation - DT7

Objective	Priority GHG Reduction Strategy
Decarbonize Transportation	Transition transit trains, buses, and related service equipment to low and zero- emission operation through equipment replacement and clean fueling infrastructure investments.

Measure 1: Transition transit fleets to 100% electric by 2040

Estimated reduction: 0.286 MMT CO2e annually in 2040.

Quantifier: CMAP

Champion: CTA, Pace

Scope: Entire MSA

Measure Justification: The Chicago Transit Authority and Pace Suburban Bus plan to fully electrify their fleets by 2040. Metra Rail and the Gary Public Transportation Corp have not announced formal electrification timelines but have begun purchasing electric vehicles in preparation for a full transition.

Calculation Method Description: The United States Environment Protection Agency's Diesel Emissions Quantifier was used to calculate the annual emissions savings from replacing a diesel transit bus with a battery electric transit bus. This per bus emissions reduction rate was then multiplied by the number of diesel buses reported by each of the region's transit systems in the Federal Transit Administration's National Transit Agency Profile database. Total emissions savings from each transit system were then combined to create an estimate of total annual GHG emissions reductions from a full electrification of the region's transit bus system, Table 7.

Table 7. Transit bus fleet electrification GHG reduction measure quantification.

Transit agency	Total diesel buses	CO2e* reduced (MMT)
Chicago Transit Authority	1,863	0.199
Gary Public Transportation Corp	19	0.002
Kenosha Area Transit	47	0.005
Pace	750	0.081
Total	2,679	0.286

*The Diesel Emissions Quantifier reports CO2 emissions, which have a CO2 equivalence of one. Other greenhouse gasses are not reported.

Decarbonize Transportation - DT7 Measure 2

Measure: Deploy eight electric trainsets into service, retire remaining 16 Tier 0 locomotives in Metra's regional passenger rail fleet.

Estimated reduction: 0.027 MMT CO2e annually in 2030

Quantifier and Champion: Metra

Scope: Metra fleet

Quantification Methodology: The United States Environment Protection Agency's Diesel Emissions Quantifier was used to calculate the annual emissions savings (NOx, PM2.5, HC, CO, CO2) supplemented with an analysis using research sourced from EPA's 2020 National Emissions Inventory Locomotive Methodology (SO2, VOCs, NH3) to estimate the results of replacing sixteen (16) Tier-0 diesel locomotive with battery-electric trainsets. Underlying assumptions are based on the diesel fuel consumption averaged across Metra's fleet of various locomotive models given Metra's current scheduled service runs annualized (195,780), which requires each locomotive to consume approximately 300,000 gallons of Ultra-Low Sulfur Diesel (ULSD) fuel. The basis of the emissions reduction estimate is the sixteen (16) retired locomotives reduce Metra's annual ULSD consumption by 4,800,000 gallons, however, the emissions produced to generate electricity to repower the battery-electric trainsets are not accounted for due to the lack of known inputs at this time. Table 8

Table 8. Commuter rail GHG reduction measure quantification.

DT 7: Pilot Zero-Emission Regional Passenger Rail Vehicles										
	Deploy 8 x Trainsets into service, retire remaining 16 x Tier-0 Locomotives in Metra's regional passenger rail fleet. Annual emissions reductions from retiring 8 x Tier-0 Locomotives for 8 x Zero-Emission Trainsets									
Output	GHG Emission Reductions	r-o locomotives n		-Pollutant Redu		tons)				
Odiput	(MT CO2e)	SO2	NOx	VOCs	NH3	PM2.5	HC	СО		
Introduce 8 x Trainsets into service, retire remaining 16 x Tier-0 Locomotives	3,375.00	28,170.00	3.70	197,121.60	26,499.00	0.20	0.73	(0.40)		
RETIRE 16 LOCOMOTIVES	27,000.00	225,360.00	29.60	1,576,972.80	211,992.00	1.60	5.80	(3.20)		
	0.027									

DT 7: Retire the Oldest Locomotives in the Regional Passenger Rail Fleet										
Aetra retires Tier-0+ locomotives with remanufactured Tier-3 Diesel Locomotives										
Annual emissions reductions from retiring 50 x Tier-0+ Locomotives for 50 x Tier-3 Locomotives										
Output	GHG Emission Reductions		Co-Pollutant Reductions (metric tons)							
Output	(MMT CO2e)	SO2	NOx	VOCs	NH3	PM2.5	НС	со		
Retire one (1) x Tier-0+ locomotive with one (1) Tier-3 locomotive	-	-	9.34	3.72	-	0.15	1.60	2.42		
RETIRE 50 TIER-0+ UNITS	-	-	467.05	186.17	-	7.55	80.00	120.85		

10.1.8 Decarbonize Transportation - DT9

Objective	Priority GHG Reduction Strategy
	Transition medium and heavy duty freight vehicles and non road equipment to low
Decarbonize	and zero-emission equipment and invest in distribution, make-ready and clean
Transportation	fueling infrastructure

Measure 1: Support electrification or fuel-switching of 2.5% medium- and heavy-duty vehicles by 2030

Estimated reduction: 0.12 MMT CO2e annually in 2030

Quantifier: CMAP

Champion: Drive Clean Indiana

Scope: Entire MSA

Measure Justification: The United States is a signatory to the global Memorandum of Understanding to advance Zero-Emission Medium and Heavy-Duty Vehicles (ZE-MHDV), which seeks to ensure that 30 percent of new medium and heavy-duty trucks sold in 2030 are zero-emission vehicles. A CMAP analysis of truck sales and lifecycles suggests that implementing the policies needed to achieve this target will result in the conversion of 2.5 percent of the region's medium and heavy-duty trucks to zero-emissions vehicles by 2030. The share of zero-emission vehicles is expected to increase at a much faster pace beyond 2030, as older vehicles are retired.

Calculation Method Description: This calculation assumes that Heavy Duty truck activity stays flat from 2020 to 2030 within the Chicago MSA. The 2020 MSA GHG Inventory utilized emission data from the National Emissions Inventory to identify on-road transportation emissions. NEI transportation data identifies emissions by vehicle type. Medium and heavy truck emissions are identified by the SCC Level 3 variable. The three following classes were included in determining the current emissions from medium and heavy truck activity within the Chicago MSA: Combination Long-haul Truck, Combination Short-haul Truck, Single Unit Long-haul Truck. NEI reports emissions in MT of CO2e. These emissions were reduced by 2.5% to account for the stated electrification goal for medium and heavy trucks, Table 9.

 Table 9. Support electrification or fuel-switching for medium- and heavy-duty trucks measure quantification.

Vehicle Type	2020 MMT CO2e	2030 MMT CO2e	Assumed Growth Rate (2020 to 2030)	2030 Scenario Reduction Target	2030 MMT CO2e Electrification Scenario	2030 Reduction Benefit
Combination Long-haul Truck	3.43	3.43	1	0.025	3.35	0.09
Combination Short-haul Truck	1.20	1.20	1	0.025	1.17	0.03
Single Unit Long-haul Truck	0.14	0.14	1	0.025	0.14	0.00
Chicago MSA Total	4.77	4.77	1	0.025	4.65	0.12

Decarbonize Transportation - DT9 Measure 2

Measure 2: Electrify 2.5% of non-road freight vehicles, especially terminal trucks and material handlers and install clean fueling infrastructure.

Estimated reduction: 0.0138 MMT CO2e annually in 2030.

Quantifier: CMAP and Drive Clean Indiana

Champion: Drive Clean Indiana

Scope: NIRPC region

Quantification Methodology: This calculation assumes that non road freight vehicles activity stays flat from 2017 to 2030 within the NIRPC region. NIRPC conducted a mobile emissions inventory that provides emissions rates for a variety of sources, including nonroad sources such as diesel terminal trucks and material handling equipment. The 2017 NIRPC mobile emissions inventory concluded nonroad equipment produced 0.55195 MMT of CO2e. If 2.5% of that equipment were electrified by 2030, this would result in a 0.14 MMT annual reduction of CO2e.

10.1.9 Decarbonize Transportation - DT11

Objective	Priority GHG Reduction Strategy
Decarbonize Transportation	Reduce freight vehicle and train idling by managing loading/unloading queues, decreasing the number of at-grade crossings through capital projects, idling control technologies, and modernizing auxiliary power and refrigeration systems.

Measure: Reduce freight locomotive idling emissions by 2.5% by deploying shore power idle reduction units

Estimated reduction: 0.0053 MTTCO2e annually in 2030

Quantifier: CMAP and Drive Clean Indiana

Champion: Drive Clean Indiana

Scope: NIRPC region

Quantification Methodology: This calculation assumes that freight locomotive activity stays flat from 2017 to 2030 within the NIRPC region. NIRPC conducted a mobile emissions inventory that provides emissions rates for a variety of sources, including freight rail locomotives. The 2017 NIRPC mobile emissions inventory concluded freight rail produced 0.21198 MMT of CO2e. If 2.5% of that equipment were electrified by 2030, this would result in a 0.005 MMT annual reduction of CO2e.

10.1.10 Decarbonize Transportation - DT15

Objective	Priority GHG Reduction Strategy
Decarbonize	Transition gas-powered landscaping equipment to low and zero
Transportation	emissions models.

Measure: Replace gas-powered lawn and garden equipment with zero emissions electric models at this rate 5% of residential mowers; 2% of commercial mowers' and 20% of commercial hand-held equipment (e.g. leaf blowers)

Estimated reduction: 0.04162 MMT COe annually in 2030.

Quantifier: Lake Michigan Air Director's Consortium

Champion: Metropolitan Mayors Caucus

Scope: DuPage, Cook, Kane, Kendall, Lake, McHenry, and Will counties

Quantification Methodology: The calculation assumes the defaults inside the MOVES nonroad model. We used 2020 based emissions to estimate the impact of these programs. LADCO also used emission reduction reports conducted by RAMBOL for ozone planning that were helpful in setting these goals. The MOVES results assumed that we would impact 5% of residential offroad equipment, 20% of commercial handheld equipment, and 2% of commercial mowers and tractors. These changes should result in a 4% reduction in overall lawn and garden or 37,753 tons of CO2 in the metropolitan area.

10.1.11 Reduce Vehicle Miles Traveled- VMT11

Objective	Priority GHG Reduction Strategy
Reduce Vehicle Miles	Establish a regional network of mobility hubs and expand shared
Traveled	micromobility and electric micromobility systems.

Measure: Replace 35 percent of low-milage SOV trips with electric and/or micromobility trips by 2030.

Quantifier: CMAP

Champion: City of Chicago

Estimated reduction: 0.22 MMT CO2e annually in 2030

Scope: Entire MSA

Measure Justification: The City of Chicago 2022 Climate Action Plan aims to increase shared micromobility trips 30% by 2030 and to enable residents to walk, bike, take transit, or use shared micromobility by 45% by 2040. Similarly, under Kane County aims, through their Climate Action and Implementation Plan, to decrease community wide Vehicle Miles Traveled (VMT) by 5% by 2030 and increase public transit commuter ridership from 2.24% to 6.5% by 2030. Additionally, the DOE notes that, in 2021, over 50% of car trips in the U.S. were 3 miles or less (with over half of that percentage being trips under 1 mile). Using this data and local knowledge, a low-milage SOV trip was defined as 2 miles or less.

Calculation Method Description: The CMAP Trip Based Model, which models transportation activity for 12 of the 14 counties within the Chicago MSA, was used to identify the percentage of single occupancy vehicle (SOV) trips that are deemed as "short trips". Short trips were defined as SOV trips that were 2 miles or fewer. The existing short SOV trips served as the baseline scenario while a 35% reduction in these trips was the scenario that was tested. The Bicycle and Pedestrian Improvements tool within the CMAQ emissions calculator toolkit was used to quantify the emissions benefit of this shift. This tool uses emissions rates based on a national scale run of the EPA MOVES model to calculate the emissions benefits of mode shift scenarios. The analysis year (2030) and the daily passenger vehicle trips for both the baseline and reduction scenarios, and the trip distance distributions were entered into the tool. The trip distance distribution of the short trips being considered in this analysis were identified based on results from the CMAP trip based model. Of trips that were 2 miles or fewer in the Chicago MSA region, 40.69% were under 1 mile and 59.31% were between 1 and 2 miles. After entering these inputs into the CMAQ tool, it calculated the daily CO2e emissions benefits of shifting 35% of SOV trips to micromobility or existing transit options by 2030. The final step in this analysis was to scale the results to include the two counties within the Chicago MSA that are not represented within the CMAP Trip Based Model (Newton, IN & Jasper, IN). NEI CO2e on-road emissions for passenger vehicles were used to scale the results for these two counties, as shown in Table 10. Table 10. Mode shift GHG reduction measure quantification.

Daily CO2e Reduction (kg/day)	Annual CO2e Reduction (kg/year)	Annual CO2e Reduction (MMT/year)	Missing County Scaling Factor	Annual CO2e Scaled Reduction (MMT/year)
593,451.85	216,609,924	0.2166	0.126	0.22

10.1.12 Manage Water and Waste Sustainably - W1

Objective	Priority GHG Reduction Strategy
Manage Water and Waste Sustainably	Capture biogas and convert to energy.

Measure: Capture 25% of biogas from publicly owned wastewater treatment in the Chicago MSA and additional landfill biogas and convert to renewable natural gas.

Estimated reduction: 0.12451 MMTCO2e annually in 2027

Quantifier: Strand Associates, Inc

Champion: Chicago-Area Wastewater Utility Consortium

Scope: Entire MSA

Quantification Methodology:

Table 11. Methane Recapture GHG reduction measure quantification.

2/23/2024													
PCAP Objective:	Manage W	ater and	Waste Su	stainably									
PCAP Strategy:	W1: Capture	e biogas a	and conver	t to energy									
Measure:	Capture 25% of biogas from publicy-owned treatment works in the Chicago MSA and additional landfill b												
Entity	Avg. Biogas Produced	Current Use	% of Gas Used	New NG Purchase (MMBTU/yr)	New Electric Load + Cogen Lost (kW)	New Biodiesel for RNG trucking (gal/yr)	RNG Production (avoided Fosil Nat Gas Production) (M/MBTU/yr)	Annual GHG Reduction CO2 eq	First year of gas production	2025-2030 GHG Reductions	2031-2050 GHG Reductions		Capital
Entry	CFD	-	• Currently					(MT/yr)			(Metric Tons)		Cost
	coo 000	Detter	4044	46 700	200		(424,400)	(2.2.42)	2025	(45.245)	(64.050)	<u>^</u>	10,000,000
Fox Metro WRD	600,000		40%	46,700	300	-	(131,400)	(3,243)					19,000,000
Wheaton San District	70,000		50%	7,600	90	800	(15,300)	. ,	2027	. ,	(480)		7,000,000
DuPage County	110,000	None	0%	-	120	1,150	(24,100)		2027				9,000,000
Fox River WRD	150,000		50%	17,500	140	1,230	(32,900)		2027		.,,,,		12,000,000
Kishwaukee WRD	250,000	~	80%	15,300	450	2,300	(54,800)		2027	(1,272)			10,000,000
Glenbard Wastewater Auth		Cogen	60%	17,500	350	1,850	(59,100)		2027	(3,260)	(16,300)		10,000,000
Kenosha Water Utility	222,000	Cogen	98%	17,500	400	3,100	(48,600)	. ,	2027	. ,	.,,,,		10,000,000
Addison, City of	70,000	Boilers	50%	7,600	90	1,080	(15,300)	(22)	2027	(88)	(440)	Ş	7,000,000
Mallard Lake Landfill	2,880,000	None	0%	-	1,000	-	(546,600)	(24,851)	2027	(99,404)	(497,020)	Ş	40,000,000
Totals	4,622,000			129,700	2,940	11,510	(928,100)	(30,318)		(124,515)	(606,360)	\$	124,000,000
•													
Assumptions													

Chicago-Area Wastewater Utility Consortium - Methane Recapture to Reduce GHG and Replenish Natural Gas Resources

1. Gas proudciton from each facility remains essentially constant over time.

2. Biodiesel will be used for hauling; truck mileage rate is 6.5 miles/gal

3. EPA's similified GHG calculator was used to estimate GHG emissions from power required, natural gas required, and truck hauling required. A credit toward GHG (

4. Capital costs are based on preliminary engineering studies at FMWRD, WSD, and DuPage County. Costs for other facilities are based on RNG system sizing and rela 5. Costs for the landfill RNG system is based on a similar landfill to RNG project in Dane County, Wisconsin.

6. The EPA spreadsheet includes GHG emission reduction estimates for other gases (CO2, N2O, CH4) on the "electricity" tab. Strand has not verifed these calculation:

10.1.13	Manage Water and Waste Sustainably - W3						
Objective		Priority GHG Reduction Strategy					
Manage Wa	ter and Waste	Increase composting and biological treatment of waste. Utilize energy and biosolid					
Sustainably		by-products.					

Measure: Divert nearly 20% of food waste generated in Cook County annually (over 311,000 tons) by establish food waste reduction, collection, and anaerobic digestion programs.

Estimated reduction: 0.20352 MMTCO2E annually in 2030

Quantifier: Illinois Sustainable Technology Center

Champion: Cook County

Scope: Cook County

Quantification Methodology: Based on 2022 Cook County landfill tonnage data and using the EPA WARM tool to estimate GHG emissions, that Cook County (Suburban Cook County & City of Chicago) transferred an estimated 311,386 tons of food scraps to the landfill in 2022. This landfilled wasted food generated 156,148.32 MTCO2E, converted to 0.20352 MMTCO2E, Table 12.

Table 12. Food waste diversion GHG reduction measure quantification.

Geography	Total Tons of Waste Being Landfilled (tons)	GHG Emissions Generated from Total Tons of Waste Being Landfilled (MTCO2e)	Projected 20% of Food Scraps Being Transferred to Landfills (tons)	Daily Amount of Food Projected going to the Landfill (tons)	Projected GHG Emissions Generated from Food Scraps Being Landfilled (MTCO2e)
Suburban Cook County	764,354	236,356.59	152,870.8	418.8	76,658.93
City of Chicago	792,576	245,083.51	158,515.2	434.3	79,489.39
County wide Totals	1,556,930	481,440.10	311,386	853.1	156,148.32

11 Appendix B Stakeholder Engagement in Chicago Regional Climate Action Planning (2019-2020)

Organizations Participating

Advanced Renewables LLC	DePaul University Dept. of Public Policy		
American Public Works Association	DuPage County Dept. of Stormwater Management		
Animalia Project	Ecology and Environment, Inc.		
Applied Ecological Services	Elevate		
Argonne National Lab, Decision and Infrastructure Sciences Division	Environmental Law and Policy Center		
Argonne National Lab, Environmental Science Division	City of Evanston		
Village of Arlington Heights	The Field Museum		
City of Aurora	First Congregational Church of Western Springs		
City of Aurora Sustainability Commission	Foresight Design Initiative		
City of Batavia Environmental Commission	Forest Preserve District of Cook County		
Baxter & Woodman	Forest Preserve District of Will County		
City of Blue Island	City of Fort Lauderdale, FL		
Blue Stem	Friends of the Chicago River		
Village of Bolingbrook	Gade Environmental Group		
Village of Broadview	City of Geneva		
Village of Brookfield	Village of Glen Ellyn		
Buro Happold Engineering	Village of Glenview		
City of Chicago	Global Covenant Mayors for Climate and Energy		
Chicago Area Clean Cities Coalition	Global Philanthropy Partnership		
Chicago Dept. of Transportation	Go Green Winnetka		
Chicago Metropolitan Agency for Planning (CMAP)	Great Lakes Commission		
CMAP Citizens' Advisory Committee	Green Diamond, LLC		
CMAP Counties Committee	Greenest Region Corps		
CMAP Economic Development Committee	Greenleaf Communities		
CMAP Environment & Natural Resources Committee	Green Ways 2Go		
CMAP Metropolitan Planning Organization Planning Committee	Village of Hanover Park		
CMAP Transportation Committee	Harvey Area Chamber of Commerce		
Chicago Region Trees Initiative	Village of Hawthorn Woods		
Chicago Wilderness, Climate Committee	Village of Hazel Crest		
Climate Literacy & Energy Awareness Network	City of Highland Park		
CME Group	Village of Hoffman Estates		
Collective Resource Compost	Village of Homer Glen, Environment Committee		
College of Lake County	Illinois Dept. of Natural Resources (IDNR)		
	1		

Organizations Participating	continued
ComEd	IDNR, Coastal Management Program
Cook County Dept. of Environment & Sustainability	Illinois Dept. of Transportation
	Illinois Division of U.S. DOT Federal Highway
City of Darien	Administration
Village of Deer Derly	Illinois Environmental Protection Agency, Office of
Village of Deer Park	Energy
Deigan & Associates	Illinois Green Alliance
City of DeKalb Environmental Commission	Illinois State Water Survey
Illinois Sustainable Technology Center	Nicor Gas
Illinois-Indiana Sea Grant	Village of Niles
International Urban Cooperation	Village of Northbrook
Jacobs Engineering Group	Northern Illinois Energy Summits and Expos
Kane County Development Dept.	Northern Illinois University Dept. of Economics
Kane County Farm Bureau	Village of Northfield
Kane County, Division of Environmental and Water Resources	Northwest Municipal Conference
Kishwaukee Water Reclamation District	Northwestern University Center for Engineering Sustainability
Village of La Grange Environmental Quality Commission	and Research
Lake County Administrator's Office	Northwestern University Dept. of Chemical and Biological Engineering
Lake County Forest Preserves	Village of Oak Brook
City of Lake Forest	Village of Oak Park
Village of Lombard	Office of Alderman Michele Smith- 43rd Ward, City of Chicago
Loyola University Chicago School of Environmental Sustainability	Openlands
McHenry County Dept. of Transportation	Village of Oswego
Merritt Connect Inc.	Pace Suburban Bus
Metra	Village of Palos Park
Metro West Council of Government	Village of Park Forest
Metropolitan Mayors Caucus	City of Park Ridge Sustainability Task Force
Metropolitan Planning Council	The Power Bureau
Metropolitan Water Reclamation District of Greater Chicago	Prairie Research Institute
Midwestern Regional Climate Center	Quercus Consulting
Village of Montgomery	Region 1 Planning Council, Rockford
Moraine Valley Community College	The Resiliency Institute
Village of Morton Grove	Village of Richton Park
Village of Mount Prospect	Village of River Forest Sustainability Commission

Organizations Participating	continued		
Naperville Area Chamber of Commerce	Sustain Libertyville Commission		
City of Naperville Environment and Sustainability Task Force	Sustainable Development Strategies Group		
National Environmental Modeling and Analysis Center -	The Technology Alliance, Inc.		
Fern Leaf Collaborative	TRC Solutions		
National Oceanic & Atmospheric Administration	United Nations, Disaster Risk Reduction, ARISE		
Natural Resources Defense Council	University of Illinois at Chicago (UIC)		
The Nature Conservancy	UIC College of Urban Planning		
SCARCE	UIC Energy Initiative		
Village of Schaumburg	UIC Office of Sustainability		
Seven Generations Ahead	UIC School of Public Health		
Shared Use Mobility Center	University of Illinois at Urbana-Champaign (UIUC)		
Shedd Aquarium	UIUC College of Law		
Solid Waste Agency of Lake County	UIUC Dept. of Atmospheric Sciences		
Village of South Barrington	UIUC Dept. of Geography & Geographic Information Science		
	University of Virginia McIntire School of Commerce		
South Metropolitan Higher Education Consortium	U.S. Environmental Protection Agency		
Southwest Conference of Mayors	City of Waukegan		
City of St. Charles	Village of Western Springs		
St. Charles Natural Resources Commission	Village of Westmont Environmental Improvement Committee		
Village of Summit	Will County Dept. of Land Use		
Sustain Edgewater	Will County Board		
	Will County Emergency Management Agency		
	Will County Governmental League		
	Village of Winnetka		
	Winnetka Environmental and Forestry Commission		

All Stakeholder Events for Climate Action Plan for the Chicago Region (2019-2020)

10/8/2019	Regional Climate Planning Kickoff & Mitigation Workshop	MMC/CMAP, Chicago	
11/5/2019	CMAP Counties Committee	CMAP, Chicago	
11/7/2020	Northern Illinois University Center for Government Studies, 50th Anniversary Conference	DeKalb	
11/21/2019	International Urban Cooperation/Global Covenant of Mayors City to City Event	Brussels, Belgium	
12/9/2019	MMC Environment Committee- Regional Climate Action Planning Meeting at the Global Congress for Climate Change and Sustainability Professionals	The Westin Chicago Northwest, Itasca	
1/9/2020	CMAP Environment & Natural Resources Committee	CMAP, Chicago	
1/21/2020	MMC Environment Committee- Regional Climate Action Planning Workshop	Village of Montgomery, Village Hall	
1/27/2020	CMAP Economic Development Committee	CMAP, Chicago	
2/7/2020	Growing Sustainable Communities Together conference	Prairie State College, Chicago Heights	
2/10/2020	National Conference of Regions	Washington, DC	
3/10/2020	CMAP Citizens' Advisory Committee	CMAP, Chicago	
3/12/2020	CMAP MPO Planning Committee	CMAP, Chicago	
5/22/2020	CMAP Transportation Committee	Remote	
5/22/2020	Webinar 1- A Chicago Regional Climate Plan- Overview & Status	Webinar	
5/29/2020	Webinar 2- Climate Impacts & Hazards	Webinar	
6/5/2020	Webinar 3- Climate Risk and Vulnerability at the Nexus of Equity, Health, Public Works,	Webinar	
	& Planning	1	
6/12/2020	Webinar 4- Regional Climate Adaptation Planning & Prioritization Virtual Workshop	Webinar	
9/23/2020	GreenTown conference	Webinar	
10/22/2020	MMC Environment Committee- Regional Climate Plan Preview	Remote	
12/3/2020	4th City-to-City International Urban Cooperation Event	Remote	

12 Appendix C: Greenhouse Gas Inventory Methodology and Documentation

This section documents the methodology used to develop the 2020 Chicago MSA greenhouse gas (GHG) emissions inventory and the process and results of executing the QAPP. The Chicago MSA is defined as nine counties in Illinois, Cook, DuPage, Kane, Kendall, Lake, McHenry, Will, DeKalb, and Grundy, four counties in Indiana, Newton, Jasper, Porter, and Lake, and one county in Wisconsin, Kenosha County. The EPA tool, Local Greenhouse Gas Inventory Tool (LGGIT), was used to produce emissions for this inventory. For each sub-sector, this document describes the methodologies and data sources used to develop the inventory estimates. Following the inventory methodology, the results from the QAPP process are also provided.

12.1.1 Data Sources

Table 1 provides a summary of the data source and quality for each sector. **Table 1. Data sources and quality for each GHG emission sector.**

Sector	Source	Data Quality
Transportation	National Emissions Inventory	High
Residential: Natural Gas	DOE/NREL SLOPE Tool	High
Residential: Electricity	DOE/NREL SLOPE Tool	High
Commercial: Natural Gas	DOE/NREL SLOPE Tool	High
Commercial: Electricity	DOE/NREL SLOPE Tool	High
Industrial: Natural Gas	DOE/NREL SLOPE Tool	High
Industrial: Electricity	DOE/NREL SLOPE Tool	High
Industrial: Processes	GHGRP	High
Agriculture and LandEPA State Inventory Tool (SIT) scaled with USDA cropland acreageManagement		High
Solid Waste	EPA FLIGHT Tool/GHGRP	High
Wastewater	Local reported data from Metropolitan Water Reclamation District (MWRD) scaled with population data from the US Census.	
Carbon Sinks	Tree canopy data from U.S. Department of Agriculture tool, i- Tree. Land use data from Replica.	Medium

12.1.2 Process

Stationary-Energy and Electricity Data

Stationary Energy encompasses emissions from natural gas and electricity within residential, commercial and institutional, and industrial buildings. The following steps will detail how the data was collected, refined, and entered into the GHG inventory tool.

1. **Step 1:** Use the SLOPE Data Viewer, which contains nationwide electricity and natural gas consumption data. These data are disaggregated by economic sector (residential, commercial, and industrial).

- 2. Step 2: Filter data for the Inventory analysis year, 2020.
- 3. **Step 3:** Filter the data to include only the counties listed below.
 - i. IL Cook
 - ii. IL DeKalb
 - iii. IL DuPage
 - iv. IL Grundy
 - v. IL Kane
 - vi. IL Kendall
 - vii. IL Lake
 - viii. IL McHenry
 - ix. IL Will
 - x. IN Jasper
 - xi. IN Lake
 - xii. IN Newton
 - xiii. IN Porter
 - xiv. WI Kenosha
- 4. **Step 4:** Use the conversion factors listed below in Table 2 to convert SLOPE outputs in MMBtu to the required unit for entry into the LGGIT inventory tool.

Table 2. Conversion factors to convert SLOPE energy outputs, which are reported in millions of British thermal units (MMBtu) to metric cubic feet (mcf) for natural gas consumption and kilowatt hours (kWh) for electricity consumption.

Energy Source	SLOPE Units	Community Module Units	Conversion Factor
Natural Gas Consumption	MMBtu	mcf	0.9643 mcf/1 MMBtu
Electricity Consumption	MMBtu	kWh	293.07 kWh/1 MMBtu

5. **Step 5:** Emissions from natural gas were entered into the inventory tool under the Stationary-Entry tab and can be found on the Stationary-Data tab. Data was entered into the LGGIT tool by county and sector.

Transportation Data

Transportation data were collected using 2020 NEI data. Due to limitations of the LGGIT tool, the NEI results were entered into the "Additional Emission Sources" tab instead of the mobile entry tab within the tool. The transportation data includes the following subsectors: on-road transportation, non-road transportation, locomotives, and commercial marine vessels.

- a. Step 1: Access the 2020 <u>NEI data retrieval tool website</u>.
- b. **Step 2:** Select the following criteria
 - i. States:
 - 1. Illinois
 - 2. Indiana
 - 3. Wisconsin
 - ii. Counties:
 - 1. IL Cook

- 2. IL DeKalb
- 3. IL DuPage
- 4. IL Grundy
- 5. IL Kane
- 6. IL Kendall
- 7. IL Lake
- 8. IL McHenry
- 9. IL Will
- 10. IN Jasper
- 11. IN Lake
- 12. IN Newton
- 13. IN Porter
- 14. WI Kenosha
- c. **Step 3:** Select GHG as pollutant. NEI GHG's include Carbon Dioxide (CO2), Methane (CH4), and Nitrous Oxide (N2O).
- d. Step 4: Filter out non transportation emissions. Select the following EIS sectors:
 - i. Mobile Commercial Marine Vessels
 - ii. Mobile Locomotives
 - iii. Mobile Non-Road Equipment Diesel
 - iv. Mobile Non-Road Equipment Gasoline
 - v. Mobile Non-Road Equipment Other
 - vi. Mobile On-Road Diesel Heavy Duty Vehicles
 - vii. Mobile On-Road Diesel Light Duty Vehicles
 - viii. Mobile On-Road non-Diesel Heavy Duty Vehicles
 - ix. Mobile On-Road non-Diesel Light Duty Vehicles
- e. **Step 5:** Export the selected data
- f. **Step 6:** Convert NEI data to Metric Tons (MT) NEI provides emissions in short tons so they need to be converted to Metric Tons using the following conversion factor -- 0.907185 MT/1 short ton.
- g. **Step 7:** Convert NEI data to CO2e. NEI emissions are reported for three GHG pollutants, CO2, CH4, and N2O, see Table 3.

GHG Conversion	Global Warming Potential V5 Conversion Factor
Carbon Dioxide (CO2) to CO2e	1
Methane (CH4) to CO2e	28
Nitrous Oxide (N2O) to CO2e	265

- h. Step 8: Separate NEI data into sectors
- i. Step 9: Input data into Additional Emission Sources tab.

Solid Waste Data

a. **Step 1:** Create a comprehensive list of landfills within the Chicago MSA region using the <u>US EPA</u> <u>FLIGHT</u> tool. This tool provides emissions in CO2e, however, these values were converted using the global warming potential values The following filters were applied to the tool to identify landfills within the MSA region

- i. Data Year: 2020
- ii. Browse to a State: Illinois
- iii. Pick a Metro Area: Chicago-Naperville-Elgin, IL-IN-WI
- 1. This will include all landfills within the MSA region, not just those within Illinois.
- iv. Sector: Waste (deselect Wastewater Treatment)
- b. Step 2: Data was exported: describe process of selecting landfills within the Chicago MSA region.
- c. **Step 3:** Each landfill report was examined to determine Methane, CO2, and NO2 emissions. These data are reported in CO2e and are converted using GWP 4 rates within the FLIGHT tool. GWP values provide a conversion rate to translate different pollutants into a standard CO2e value. Because the inventory being described used GWP 5 rates, these values all needed to be converted back to raw emissions using the GWP 4 rates and then converted back to CO2e using the GWP 5 rates. These rates are shown in the table below.

Pollutant	Global Warming Potential Fourth Assessment Factors	Global Warming Potential Fifth Assessment Factors
Carbon Dioxide (CO2)	1	1
Methane (CH4)	28	25
Nitrous Oxide (N2O)	265	298

Table 4. Conversion factors for three GHG pollutants to CO2e

- d. Step 4: Converted FLIGHT raw emissions to CO2e emissions using GWP V5 values.
- e. **Step 5:** Landfills were summarized by the county they were located in and were entered into the spreadsheet tool in the solid waste entry tab.

Wastewater Data

- a. Step 1: Wastewater emissions were estimated based on results from the <u>CMAP 2019 GHG</u> <u>Inventory</u>. This inventory, which contains seven of the fourteen counties within the Chicago MSA region, calculated wastewater emissions based on biogas consumption emissions at the wastewater treatment plants in the region, as provided directly by the Metropolitan Water Reclamation District (MWRD) wastewater treatment plants in the region. Electricity and natural gas usage from these plants were included within the stationary energy sections of the inventory.
- b. Step 2: MWRD provided CH4 and N2O emissions data. For counties included in both the Chicago MSA Inventory and the CMAP 2019 Inventory, the rates from the 2019 CMAP inventory were kept. For counties not included in the CMAP 2019 inventory, the data from MWRD was used to calculate emissions per million gallons of wastewater treated per person for the CMAP region. These CMAP per population rates were then used to calculate wastewater emissions from biogas emissions for the counties not included in the CMAP 2019 inventory.
- c. **Step 3:** Wastewater data was converted to MT CO2e and were entered into the spreadsheet tool under Additional Emission Sources.

Agriculture and Land Management Data

- a. Step 1: Obtain state-level fertilizer data from the State Inventory Tool Agriculture Module. Fertilizers consumption data at the state level is available from the State Inventory Tool (SIT) Agriculture Module. The SIT Modules can be downloaded <u>here</u>. This dataset lists total nitrogen consumption in metric tons by state on the FertilzerData tab.
- b. Step 2: Fertilizer data is reported in fertilizer years, so we need to convert this to calendar years. The Tennessee Valley Authority estimates that 35% of fertilizer consumption occurs from July to December and 65% from January to June. However, values for the two years using the calendar year of 2020 and 2019 are the same, so this does not impact the analysis.
 - i. Fertilizer_{total} = (Year 1 Fertilizer t_m * 35%) + (Year 2 Fertilizer t_m * 65%)
 - ii. Where:
 - 1. Fertilizer_{total}: total amount of fertilizer applied during the calendar year
 - 2. Year 1 Fertilizer t_m : total amount of fertilizer applied during Year 1 fertilizer year
 - 3. Year 2 Fertilizer t_m : total amount of fertilizer applied during Year 2 fertilizer year
 - 4. t_m: metric tons
 - iii. Illinois: 937,962 = (937,962 * 35%) + (937,962 * 65%)
 - iv. Indiana: 460,067 = (460,067 * 35%) + (460,067 * 65%)
 - v. Wisconsin: 321,396 = (321,396 * 35%) + (321,396 * 65%)
- c. **Step 3:** Convert from metric tons to short tons to enter into the Community Greenhouse Gas Tool.
 - i. Fertilizer_{total} = Fertilizer t_m / 0.9072
 - ii. Where:
 - 1. Fertilizer_{total}: total amount of fertilizer applied, from all sources
 - $2. \quad t_s: short \ tons$
 - 3. t_m : metric tons
 - 4. 0.9072: the conversion factor for metric tons to short tons
 - iii. Illinois: 1,033,909 t_s = 937,962 t_m / 0.9072
 - iv. Indiana: 507,128 t_{s} = 460,067 t_{m} / 0.9072
 - v. Wisconsin: 354,273 t_s = 321,396 t_m / 0.9072
- d. **Step 4:** Calculate the consumption of each fertilizer type. So far, we have established statewide fertilizer usage across all types of fertilizers. The following formulas will calculate the consumption of synthetic fertilizer, manure, and organic fertilizer.
 - i. Calculating Consumption of Fertilizer, Synthetic N (short tons)
 - 1. Fertilizer_{synthetic} = Fertilzer t_s * 99.75%
 - 2. Where:
 - a. Fertilizer_{synthetic}: amount of synthetic fertilizer applied, from total fertilizer (short tons).
 - b. 99.91%: percentage of synthetic nitrogen fertilizer in total fertilizer.
 - 3. Illinois: 1,031,357 = 1,033,909 * 99.75%
 - 4. Indiana: 505,876 = 507,128 * 99.75%
 - 5. Wisconsin: 353,398 = 354,273 * 99.75%
 - ii. Calculating Consumption of Fertilizer, Manure (short tons)
 - 1. Fertilizer_{manure} = Fertilizer t_s * 0.01%
 - 2. Where:
 - c. Fertilizer manure: amount of manure applied, from total fertilizer.
 - d. 0.01%: Percentage dried manure fertilizer in total fertilizer.
 - 3. Illinois: 60 = 1,033,909 * 0.01%

- 4. Indiana: 30 = 507,128 * 0.01%
- 5. Wisconsin: 21 = 354,273 * 0.01%
- iii. Calculating Consumption of Fertilizer, Activated Sewage Sludge (short tons)
 - 1. Fertilizer_{organic} = Fertilizer t_s * 0.15%
 - 2. Where:
 - e. Fertilizer_{organic}: amount of activated sewage sludge fertilizer applied, from total fertilizer
 - f. 0.05% : percentage of (organic) sewage sludge in fertilizer
 - 3. Illinois: 1,603 = 1,033,909 * 0.15%
 - 4. Indiana: 786 = 507,128 * 0.15%
 - 5. Wisconsin: 549 = 354,273 * 0.15%
- iv. Calculating Consumption of Fertilizer, Other Organic Materials (short tons)
 - 1. Fertilizer_{other} = Fertilizer t_s * 0.09%
 - 2. Where:
 - g. Fertilizer_{other}: amount of other fertilizer applied (e.g., compost), from total fertilizer.
 - h. 0.09% : percentage of other fertilizer
 - 3. Illinois: 889 = 1,033,909 * 0.09%
 - 4. Indiana: 436 = 507,128 * 0.09%
 - 5. Wisconsin: 305 = 354,273 * 0.09%
- e. **Step 5: Downscale state-level data to the county level.** After state-level data are calculated, it needs to be downscaled to the county level. To do this, state-level fertilizer consumption estimates were multiplied by the proportion of state cropland acreage found within each of the counties in the Chicago MSA region. Total cropland acres in each county and state can be downloaded from the U.S. Department of Agriculture (USDA)'s QuickStats <u>database</u>.
 - i. Scaling State-Level Fertilizer Data to the County Level
 - 1. Fertilizer_{county} = (Cropland acres_{county} / Cropland acres_{state}) * Fertilizer_{state}
 - 2. Where:
 - a. Cropland acres_{county}: total cropland acreage per selected county, from USDA QuickStats
 - b. Cropland acres_{state}: total cropland acreage per selected state, from USDA QuickStats
 - c. Fertilizer_{state fertilizer type}: total fertilizer consumption per fertilizer type (synthetic, organic, manure) per selected state, from SIT Agriculture Module.

County, State	Cropland Acres _{county}	Cropland acres _{state}	Short Tons Fertilizer _{state}	Short Tons Fertilizer _{county}
Cook, IL	10,763	24,003,086	1,033,909	464
DeKalb, IL	362,602	24,003,086	1,033,909	15,619
DuPage, IL	1,643	24,003,086	1,033,909	71
Grundy, IL	224,916	24,003,086	1,033,909	9,688
Kane, IL	161,894	24,003,086	1,033,909	6,973
Kendall, IL	133,626	24,003,086	1,033,909	5,756
Lake, IL	23,883	24,003,086	1,033,909	1,029
McHenry, IL	189,679	24,003,086	1,033,909	8,170
Will, IL	208,158	24,003,086	1,033,909	8,966
Jasper, IN	251,565	12,909,673	507,128	9,882
Lake, IN	106,022	12,909,673	507,128	4,165
Newton, IL	161,348	12,909,673	507,128	6,338
Porter, IL	114,702	12,909,673	507,128	4,506
Kenosha, WI	65,214	10,085,021	354,273	2,291
TOTAL				83,917

Table 5. Estimated Short Tons of Fertilizer by County

f. **Step 6:** Enter fertilizer consumption data into the tool.

Industrial Processes

- a. Step 1: Industrial process emissions are reported to the EPA and are available for download via the <u>GHG reporting program</u>. There are two relevant reports that needed to be downloaded, the sector information and the subpart summary information. The sector information report provides greenhouse gas information displayed by reporting sectors. The Subpart information report provides greenhouse gas information displayed by the subpart that a facility reports under.
- b. **Step 2:** Subpart Information Summary
 - i. Choose a Subject Area: Subpart Information
 - ii. Select Fields: Select All
 - iii. Add Search Criteria: Add search criteria for state abbreviation and reporting year.
 - 1. State Abbreviations should include Illinois, Wisconsin, and Indiana
 - 2. Reporting Year filter should be set to 2020
 - iv. Export to CSV
- c. **Step 3:** Sector Summary Information
 - i. Choose a Subject Area: Sector Summary Information
 - ii. Choose a Table: V_GHG_Emitter_Sector
 - iii. Select Fields: Select All
 - iv. Add Search Criteria: Add search criteria for state abbreviation and reporting year.
 - 1. State Abbreviations should include Illinois, Wisconsin, and Indiana
 - 2. Reporting Year filter should be set to 2020
 - v. Export to CSV

- d. **Step 3:** Review both downloaded files and filter out data for counties that are not included in the Chicago MSA region.
- e. **Step 4:** A sector mapping crosswalk was developed for the 2019 CMAP GHG Inventory and this resource was utilized for this inventory. The crosswalk can be found on the CMAP_Sector_Lookup tab of the Chicago_MSA_GHGRP_Data.xlsx.
 - i. Due to the larger geography of this inventory, several subsectors were not included within the crosswalk. These were added to the existing CMAP Sector Mapping crosswalk and are now included on the CMAP_Sector_Lookup tab.
- f. Step 5: Emissions were summarized by County for the following sectors
 - i. Power Plant Emissions
 - ii. Natural Gas Refineries
 - iii. Petroleum Refining
 - iv. Petroleum and Natural Gas Systems
 - v. Hydrogen Production
 - vi. Ethanol Production
 - vii. Iron and Steel Production
 - viii. Petrochemical Production
 - ix. Lime Production
 - x. Glass Production
 - xi. Zinc Production
 - xii. Food Processing
 - xiii. Manufacturing (Auto)
 - xiv. Military
 - xv. Other Chemicals
 - xvi. Other Metals (not including Iron and Steel)
 - xvii. Other Minerals
 - xviii. Pulp and Paper Production
- g. Step 6: Emissions were entered into the GHG Inventory tool in CO2e

Carbon Sinks

- a. Step 1: Carbon sinks are represented by tree coverage within this inventory. Tree coverage data comes from the U.S. Department of Agriculture tool, i-Tree. I-Tree is a peer reviewed database that provides urban and rural forestry analysis and benefits assessment tools. The first step was to obtain county level tree canopy coverage from i-tree tools. The counties selected are listed below:
 - a. Cook, IL
 - b. DeKalb, IL
 - c. DuPage, IL
 - d. Grundy, IL
 - e. Kane, IL
 - f. Kendall, IL
 - g. Lake, IL
 - h. McHenry, IL
 - i. Will, IL
 - j. Jasper, IN
 - k. Lake, IN
 - I. Newton, IL

- m. Porter, IL
- n. Kenosha, WI
- b. **Step 2:** The next three steps do not require any additional user action. The final step within the tool will generate a report. Users should select the following criteria to produce a report with tree canopy coverage by counties:
 - a. Report Type: Executive Summary
 - b. Report Element: Canopy and Impervious
 - c. The following report, showing tree canopy coverage by county, is the result.
 - i. <u>http://landscape.itreetools.org/report/48a4e664-dcca-4f63-a186-</u> <u>39e321b144c6/executive-summary</u>
- c. **Step 4:** Obtain land use data by County from <u>Replica</u>. This land use dataset provides area in square feet for fifteen distinct land use categories. This inventory only considers residential, commercial/institutional, industrial, and energy generation as categories, so each of the land use categories needed to be assigned to one of these four categories. Table 6 provides the crosswalk that was used.

Chicago 2020 MSA Inventory Sector **Replica Land Use Category** Single Family Residential Multi Family Residential Retail Commercial/Institutional Office Commercial/Institutional Non Retail Attraction Commercial/Institutional Mixed Use Residential Industrial Industrial Civic/Institutional Commercial/Institutional Commercial/Institutional Education Healthcare Commercial/Institutional Utilities **Energy Generation** Split* **Open Space** Agriculture Industrial Other Split* Unknown Split*

Table 6. Land use category crosswalk

*Land use categories with no clear connection to an existing inventory sector were split evenly among the existing sectors.

d. Step 5: Calculate the percentage of land attributed to the four inventory sectors for each county as well as the percentage of area in each county that is covered by tree canopy coverage.
 Table 7. Estimates of tree canopy coverage by county

County, State	Canopy Coverage %	Residential Area Share	Commercial/ Institutional Area Share	Industrial Area Share	Energy Generation Share
McHenry, IL	18.6%	45.2%	4.8%	49.1%	0.9%

Kane, IL	15.7%	43.0%	11.0%	43.3%	2.7%
Newton, IN	8.4%	35.2%	14.9%	35.1%	14.7%
Jasper, IN	7.9%	39.8%	15.1%	29.9%	15.2%
Cook, IL	16.7%	55.1%	22.3%	14.0%	8.6%
DeKalb, IL	2.5%	25.2%	2.0%	72.0%	0.8%
Kendall, IL	8.1%	40.0%	2.8%	56.6%	0.5%
Porter, IN	18.1%	50.0%	5.7%	42.1%	2.3%
DuPage, IL	26.3%	58.6%	23.9%	10.7%	6.9%
Lake, IL	10.3%	59.4%	19.1%	18.2%	3.3%
Kenosha, WI	5.1%	54.0%	11.2%	32.5%	2.3%
Lake, IN	14.0%	36.8%	10.1%	47.8%	5.3%
Grundy, IL	6.3%	22.7%	2.2%	74.4%	0.7%
Will, IL	14.0%	43.1%	8.8%	45.4%	2.6%

e. **Step 6:** Use these percentages to determine the total tree canopy coverage area (in sqft) for each county.

Step 7: The required input for the inventory tool was total area of tree canopy coverage by sector in km2. The following conversion rate was used to convert the tree canopy coverage in sqft to km2 – 10,763,900 / 1 Km2.

f. Step 8: Enter tree canopy coverage data into the inventory tool.

12.1.3 Quality Assurance Project Plan Process and Results

As required, CMAP developed a Quality Assurance Project Plan (QAPP) that outlined the process for reviewing the development of the GHG inventory for quality assurance purposes. The following section outlines the process for performing the QAPP and provides the results by sector/emission source.

Mobile Sources

As described above, mobile sources in this inventory were collected from the U.S. National Emissions Inventory. This dataset is considered of the highest quality rank in terms of data quality. The methodology used to gather this data and enter it into the inventory tool also followed EPA guidance.

Data was collected twice, once when it was entered into the inventory tool and then a second time, following the instructions noted in the mobile sources section above, to ensure that no errors were made in collecting, cleaning, and entering the data into the inventory tool. This analysis resulted in an exact match to the inventory entry.

Mobile emissions were also compared to the 2019 CMAP Greenhouse Gas Inventory and a variance between the two inventories for the overlapping areas, Table 8. Only the seven MSA counties covered within the CMAP 2019 GHG Inventory were compared.

Subsector	MSA GHG Inventory (MT CO2e) for CMAP Counties	CMAP 2019 GHG Inventory (MT CO2e)	Variance
On-Road Mobile Emissions	25,825,978	29,506,123	-12.5%
Non-Road Mobile Emissions	3,936,888	3,626,269	8.6%
All Other Mobile Emissions*	566,668	912,269	-37.9%

Table 8. Comparison between mobile GHG emissions in the Chicago MSA 2020 GHG Inventory for the counties within the CMAP region and CMAP's 2019 GHG inventory.

*All Other Mobile Emissions included emissions from locomotives and marine vessels.

All these subsectors were within the stated variance within the MSA QAPP. It is important to note that there while all three of these subsectors fall within the stated variance goals within the MSA QAPP, emissions from locomotives and marine vessels are larger than other comparisons. This is primarily tied to additional emissions from marine vessels within the CMAP 2019 GHG Inventory. These differences should be noted and considered for future analysis.

Electric Power Consumption

As described above, electric power consumption in this inventory were derived from the EPA tool SLOPE, which provides power consumption estimates by county. Data for this section were collected twice, once when it was entered into the inventory tool and then a second time, following the instructions noted in the stationary energy section above, to ensure that no errors were made in collecting, cleaning, and entering the data into the inventory tool. This analysis resulted in an exact match to the inventory entry.

Electricity consumption emissions were compared to the 2019 CMAP Greenhouse Gas Inventory and a variance between the two inventories for the overlapping areas, Table 9. Only the seven MSA counties covered within the CMAP 2019 GHG Inventory were compared.

Subsector	MSA GHG Inventory (MT CO2e) for CMAP Counties		Variance
Residential Electricity	10,317,241	9,837,890	4.9%
Commercial Electricity	20,744,914	20,367,940	1.9%
Industrial Electricity	8,734,420	7,907,887	10.5%

Table 9. Comparison between electric power GHG emissions in the Chicago MSA 2020 GHG Inventory for the counties within the CMAP region and CMAP's 2019 GHG inventory.

Natural Gas Consumption

As described above, natural gas emissions in this inventory were derived from the EPA tool, SLOPE, which provides power consumption estimates by county.

Data for this section were collected twice, once when it was entered into the inventory tool and then a second time, following the instructions noted in the stationary energy section above, to ensure that no errors were made in collecting, cleaning, and entering the data into the inventory tool. This analysis resulted in an exact match to the inventory entry.

Natural Gas consumption emissions were compared to the 2019 CMAP Greenhouse Gas Inventory and a variance between the two inventories for the overlapping areas, Table 10. Only the seven MSA counties covered within the CMAP 2019 GHG Inventory were compared.

Table 10. Comparison between natural gas GHG emissions in the Chicago MSA 2020 GHG Inventory for
the counties within the CMAP region and CMAP's 2019 GHG inventory.

Subsector	MSA GHG Inventory (MT CO2e) for CMAP Counties		Variance
Residential Natural Gas	16,267,367	17,265,623	-5.8%
Commercial Natural Gas	13,008,443	11,951,341	8.8%
Industrial Natural Gas	5,046,982	5,127,403	-1.6%

Solid Waste

As described above, solid waste emissions in this inventory were derived from the US EPA tool, FLIGHT, which provides emissions information for large point sources, such as landfills.

Data for this section were collected twice, once when it was entered into the inventory tool and then a second time, following the instructions noted in the solid waste section above, to ensure that no errors were made in collecting, cleaning, and entering the data into the inventory tool. This analysis resulted in an exact match to the inventory entry.

Solid waste emissions were compared to the 2019 CMAP Greenhouse Gas Inventory and a variance between the two inventories for the overlapping areas, Table 11. Only the seven MSA counties covered within the CMAP 2019 GHG Inventory were compared.

Table 11. Comparison between solid waste GHG emissions in the Chicago MSA 2020 GHG Inventory for the counties within the CMAP region and CMAP's 2019 GHG inventory.

Subsector	MSA GHG Inventory (MT CO2e) for CMAP Counties		Variance
Solid Waste	525,115	461,051	12.2%

Wastewater

As described above, wastewater emissions in this inventory were derived from the 2019 CMAP GHG Inventory. It should be noted that this is the same inventory that has been used to determine the variance for the QA/QC process. As a result, the variance for this sector is 0%.

Data for this section were collected twice, once when it was entered into the inventory tool and then a second time, following the instructions noted in the solid waste section above, to ensure that no errors were made in collecting, cleaning, and entering the data into the inventory tool. This analysis resulted in an exact match to the inventory entry, Table 12. Only the seven MSA counties covered within the CMAP 2019 GHG Inventory were compared.

Table 12. Comparison between wastewater GHG emissions in the Chicago MSA 2020 GHG Inventoryfor the counties within the CMAP region and CMAP's 2019 GHG inventory.

Subsector	MSA GHG Inventory (MT	CMAP 2019 GHG	Variance
	CO2e) for CMAP Counties	Inventory (MT CO2e)	

			3	
Wastewater	71,337	71,337	0%	

Agriculture and Land Management

As described above, Agriculture and Land Management emissions in this inventory were derived from scaled state inventory data.

Data for this section were collected twice, once when it was entered into the inventory tool and then a second time, following the instructions noted in the solid waste section above, to ensure that no errors were made in collecting, cleaning, and entering the data into the inventory tool. This analysis resulted in an exact match to the inventory entry, Table 13.

Table 13. Comparison between agriculture and land management GHG emissions in the Chicago MSA2020 GHG Inventory and the MSA GHG QC Inventory.

Subsector	MSA GHG Inventory (MT CO2e) for CMAP Counties		Variance
Agriculture and Land Management	71,337	71,337	0%

Industrial Processes

As described above, Industrial process emissions in this inventory were derived from the GHG reporting program.

Data for this section were collected twice, once when it was entered into the inventory tool and then a second time, following the instructions noted in the industrial process section above, to ensure that no errors were made in collecting, cleaning, and entering the data into the inventory tool. This analysis resulted in an exact match to the inventory entry, Table 14. Only the seven MSA counties covered within the CMAP 2019 GHG Inventory were compared.

Table 14. Comparison between industrial processes GHG emissions in the Chicago MSA 2020 GHG Inventory for the counties within the CMAP region and CMAP's 2019 GHG inventory.

Subsector	MSA GHG Inventory (MT CO2e) for CMAP Counties		Variance
Fugitive Emissions and	4,406,869	3,556,287	23.8%
Energy Industry Emissions			

Both the fugitive emissions and energy industry subsectors were within the stated variance within the MSA QAPP. It is important to note that there while all three of these subsectors fall within the stated variance goals within the MSA QAPP, there are still significant differences between the two inventories, despite similar sources and methodologies. Specific facilities were examined and compared as part of the QA process to determine if specific plants were responsible for the increase in emissions from the CMAP 2019 inventory to the 2020 MSA inventory. Several facilities, such as the Lemont Refinery in Will County, Illinois were identified as having significantly higher emissions in 2020 than 2019, as reported to the GHGRP.

Emissions from other industrial processes, such as metal and glass production were not included in the 2019 CMAP GHG Inventory and thus, cannot be used for QC. These emissions were compared to the

independently gathered information from the same source and resulted in an exact match of the industrial process emissions reported in the 2020 MSA GHG Inventory.

13 Appendix D: LIDAC identification process

CMAP reviewed the Climate Pollution Reduction Grant technical guidance and corresponding materials to understand the methodology used in the Climate and Economic Justice Screening Tool (CEJST) and EJScreen.^{21,22} The U.S. EPA recommends following LIDAC definition which is provided in a combined map. ²³

- Any census tract that is included as disadvantaged in CEJST; and/or,
- Any census block group that is at or above the 90th percentile for any of EJScreen's supplemental indexes when compared to the nation or state, and/or any geographic area within Tribal lands and indigenous areas as included in EJScreen.

The Climate and Economic Justice Screening Tool (CEJST)

CEJST is an interactive map that identifies disadvantaged communities at the Census tract level based on indicators of burdens in eight categories: climate change, energy, health, housing, legacy pollution, transportation, water and wastewater, and workforce development.²⁴To qualify as disadvantaged, one of the burden indicators must exceed the 90th percentile. Developed by the Council on Environmental Quality in response to Executive Order 14008: Tackling the Climate Crisis at Home and Abroad,²⁵ the tool is intended to be used for federal programs covered by the Justice40 Initiative. Justice40 seeks to deliver 40 percent of the benefits of investments in climate, clean energy, and related areas to disadvantaged communities.

EJScreen and its supplemental indexes

²¹ U.S. EPA Office of Air and Radiation, 2023, "Benefits Analyses: Low-Income and Disadvantaged Communities, Climate Pollution Reduction Grants Program: Technical Reference Document for States, Municipalities, and Air Pollution Control Agencies," available at https://www.epa.gov/system/files/documents/2023-05/LIDAC%20Technical%20Guidance%20-%20Final_2.pdf

²² The 1.0 version of CEJST, which is the current version, was released on November 2, 2022. Details on the datasets used and years associated with that data can be found at:

https://screeningtool.geoplatform.gov/en/methodology. The most recent update of EJScreen was in June 2023. Details on that update, including datasets used and years associated with that data can be found here: https://www.epa.gov/ejscreen/ejscreen-change-log.

²³ CMAP used the U.S. EPA Inflation Reduction Act Disadvantaged Communities Map, which combines CEJST and EJScreen Supplemental Indexes into one footprint for relevant IRA programs and analyses. Available at:

https://www.epa.gov/environmentaljustice/inflation-reduction-act-disadvantaged-communities-map ²⁴ Council on Environmental Quality, Climate and Economic Justice Screening Tool, available at https://screeningtool.geoplatform.gov/en/#3/33.47/-97.5

²⁵ Executive Order 14008: Tackling the Climate Crisis At Home and Abroad, available at

https://www.federalregister.gov/documents/2021/02/01/2021-02177/tackling-the-climate-crisis-at-home-and-abroad #p-151

EJScreen is U.S. EPA's environmental justice mapping and screening tool.²⁶ The 13 supplemental indexes combine environmental indicators with demographic socioeconomic indicators, to show how an area compares to the state, EPA region, or nation in terms of environmental justice. The five-factor supplemental demographic index averages the following factors: percent low-income, percent unemployed, percent limited English speaking, percent less than high school education, and low life expectancy.²⁷ The purpose of this methodology is to display areas with the highest intersection between socioeconomic factors and the given environmental indicator.

Why use both tools to identify low-income and disadvantaged communities?

EJScreen operates at the census block group level, which is at a finer geographic scale than CEJST, which operates at the census tract level (census tracts, which are typically subdivisions of counties, contain block groups, which are groups of blocks within tracts).²⁸ EJScreen ensures that smaller areas (especially those within non-disadvantaged areas) can still be identified as disadvantaged. Generally, EJScreen's supplemental indexes provide a focused view of environmental justice across communities, while CEJST provides a broader view of burdens relevant to climate and economic justice. In tandem, they can guide implementation of PCAP measures that will deliver key co-benefits that address climate, economic, and environmental impacts in overly burdened communities.²⁹

Identifying LICADs

An initial review of the screening criteria shows that only the first 7 of the 13 EJScreen supplemental indexes are likely to impacted by the PCAP's greenhouse gas emissions reduction measures (Table 1).CMAP conducted an additional review of block groups that are only identified as disadvantaged based on the remaining EJScreen supplemental indexes (8-13).³⁰ This additional analysis indicated that only a small percentage of the overall LIDACs were identified via these indexes alone. CMAP concluded that using all the EJScreen supplemental indexes in the LIDAC definition would help identify the greatest number of communities most in need of investment.

²⁶ U.S. EPA, EJScreen: Environmental Justice Screening and Mapping tool, available at:

https://www.epa.gov/ejscreen/ej-and-supplemental-indexes-ejscreen

²⁷ The 13 Supplemental Indexes differ from the Environmental Justice Index in that the Supplemental Indexes use a five-factor demographic index, as opposed to the two-factor demographic index used by the Environmental Justice Index (which only averages low income and people of color populations). The five-factor demographic index provides a more comprehensive picture of the characteristics and vulnerabilities of a community.

²⁸ Details and definitions on tracts and block groups can be found in the U.S. Census Bureau glossary:

https://www.census.gov/programs-surveys/geography/about/glossary.html#par_textimage_4

²⁹ U.S. EPA Inflation Reduction Act Disadvantaged Communities Map combines CEJST and EJScreen Supplemental Indexes into one footprint for relevant IRA programs and analyses. Available at:

https://www.epa.gov/environmentaljustice/inflation-reduction-act-disadvantaged-communities-map ³⁰ Only 69 census block groups were identified by EJScreen Supplemental Indexes 8-13 alone, compared to the nearly 3,000 census block groups identified via CEJST and EJ Screen Supplemental Indexes 1-7.

Suppler	Supplemental Indexes		
1	Particulate matter 2.5		
2	Ozone		
3	Diesel particulate matter		
4	Air toxics cancer risk		
5	Air toxics respiratory hazard index		
6	Toxic releases to air		
7	Traffic proximity		
8	Lead paint		
9	Risk Management Plan (RMP) facility proximity		
10	Hazardous waste proximity		
11	Superfund proximity		
12	Underground storage tanks		
13	Wastewater discharge		

Table 1. Supplemental indexes in EJScreen

Source: U.S. EPA

Further refinements to the LIDAC definition will be explored through the development of the Comprehensive Climate Action Plan to ensure adequate representation of regional burdens and needs. While well established and highly vetted, CEJST and EJScreen were developed at the federal level and operate at the national scale. CMAP sees an opportunity to both explore a more regionally focused approach and to develop a stronger and more granular understanding of the burdens that communities face across the region during the Comprehensive Climate Action Plan process. Doing so could inform effective greenhouse gas emissions reduction strategy development and implementation at a more granular level. As such, the enclosed LIDAC definition and identified LIDACs should be understood to be provisional for the purposes of the PCAP but may be updated in the future to better reflect the characteristics and needs of the region.

14 Appendix E: LIDAC census block groups for the Chicago MSA

The List of Chicago MSA LIDAC spreadsheet includes tables of the nearly 3,000 census block groups identified in the Chicago MSA. Column headings include the following:

- Census block group identification number³¹
- Municipality (this includes cities, towns, villages, and census designated places)
- County
- State

An Excel version of this LIDAC list may be downloaded here.

List of Chicago MSA Low Income and Disadvantage Communities (LIDAC)

0			/(0)
Block Group ID		Municipality	County
1703	318233021	Alsip	Cook County
1703	318233022	Alsip	Cook County
1703	318233043	Alsip	Cook County
1703	318234004	Alsip	Cook County
1703	318036122	Arlington Heights	Cook County
1703	318036132	Arlington Heights	Cook County
1703	318051071	Arlington Heights	Cook County
1703	318051072	Arlington Heights	Cook County
1703	318051075	Arlington Heights	Cook County
1703	318051083	Arlington Heights	Cook County
1703	318051084	Arlington Heights	Cook County
1703	318044061	Bartlett	Cook County
1703	318045081	Bartlett	Cook County
1703	318202021	Bedford Park	Cook County
1703	318205011	Bedford Park	Cook County
1703	318205021	Bedford Park	Cook County
1703	318209011	Bedford Park	Cook County
1703	318209021	Bedford Park	Cook County
1703	318170001	Bellwood	Cook County
1703	318170002	Bellwood	Cook County
1703	318170003	Bellwood	Cook County
1703	318170004	Bellwood	Cook County
1703	318170005	Bellwood	Cook County

³¹ The census block group ID number is a 12-digit code with the following: the 2-digit state code, the 3-digit county code, the 6-digit tract code, and the final digit as the block group. Details can be found on the U.S. Census Bureau website: https://www.census.gov/programs-surveys/geography/guidance/geo-

identifiers.html#:~:text=FIPS%20codes%20for%20smaller%20geographic,state%20and%20the%20nesting%20coun ty.

170318171011	Bellwood
170318171012	Bellwood
170318171013	Bellwood
170318171014	Bellwood
170318171021	Bellwood
170318117011	Bensenville
170318146001	Berwyn
170318146002	Berwyn
170318146003	Berwyn
170318146004	Berwyn
170318146005	Berwyn
170318148001	Berwyn
170318149001	Berwyn
170318149002	Berwyn
170318150001	Berwyn
170318150002	Berwyn
170318150003	, Berwyn
170318152001	, Berwyn
170318152004	, Berwyn
170318152005	, Berwyn
170318154004	, Berwyn
170318155001	, Berwyn
170318155003	Berwyn
170318155004	Berwyn
170318155007	Berwyn
170318212001	Blue Island
170318212002	Blue Island
170318212003	Blue Island
170318212004	Blue Island
170318213001	Blue Island
170318213002	Blue Island
170318213003	Blue Island
170318213004	Blue Island
170318234002	Blue Island
170318234003	Blue Island
170318234004	Blue Island
170318234004	Blue Island
170318235001	Blue Island
170318236031	Blue Island
170318238031	Blue Island
170318248001	Blue Island
170318268003	Blue Island
170318268004	Blue Island
170318205011	Bridgeview
170318205012	Bridgeview
170318205013	Bridgeview

170318205014	Bridgeview
170318205015	Bridgeview
170318205021	Bridgeview
170318205022	Bridgeview
170318205023	Bridgeview
170318205024	Bridgeview
170318206041	Bridgeview
170318209011	Bridgeview
170318210012	Bridgeview
170318210013	Bridgeview
170318210014	Bridgeview
170318229001	Bridgeview
170318237031	Bridgeview
170318237032	Bridgeview
170318237034	Bridgeview
170318179001	Broadview
170318179002	Broadview
170318179003	Broadview
170318179004	Broadview
170318179005	Broadview
170318188006	Brookfield
170318194001	Brookfield
170318194002	Brookfield
170318194003	Brookfield
170318024042	Buffalo Grove
170318209011	Burbank
170318209012	Burbank
170318209013	Burbank
170318209014	Burbank
170318209021	Burbank
170318209022	Burbank
170318209023	Burbank
170318209023	Burbank
170318200024	Burbank
170318210011	Burbank
170318210012	Burbank
170318210013	Burbank
170318210014	Burbank
170318210021	Burbank
_/ 00 _0 _ 00 _ 00	Burbank
170318210023	
170318210024	Burbank
170318210025	Burbank
170318211011	Burbank
170318211012	Burbank
170318211013	Burbank
170318211014	Burbank

170318211021	Burbank
170318211022	Burbank
170318211023	Burbank
170318211024	Burbank
170318257001	Burnham
170318257002	Burnham
170318257003	Burnham
170318201013	Burr Ridge
170318258011	Calumet City
170318258013	Calumet City
170318258021	Calumet City
170318258022	, Calumet City
170318258023	, Calumet City
170318258031	Calumet City
170318258032	Calumet City
170318258033	Calumet City
170318258034	Calumet City
170318258035	Calumet City
170318259001	Calumet City
170318259001	Calumet City
170318259002	
	Calumet City
170318260001	Calumet City
170318260002	Calumet City
170318260003	Calumet City
170318261001	Calumet City
170318261002	Calumet City
170318261003	Calumet City
170318261004	Calumet City
170318261005	Calumet City
170318261006	Calumet City
170318262021	Calumet City
170318262022	Calumet City
170318262023	Calumet City
170318262024	Calumet City
170318262025	Calumet City
170318279011	Calumet City
170318212001	Calumet Park
170318214011	Calumet Park
170318214012	Calumet Park
170318214013	Calumet Park
170318214014	Calumet Park
170318214021	Calumet Park
170318214022	Calumet Park
170318214023	Calumet Park
170310101001	Chicago
170310101002	Chicago
_,	511100.00

170310101003	Chicago
170310102011	Chicago
170310102012	Chicago
170310102013	Chicago
170310102014	Chicago
170310102021	Chicago
170310102022	Chicago
170310103001	Chicago
170310103002	Chicago
170310104003	Chicago
170310105031	Chicago
170310105032	Chicago
170310107011	Chicago
170310107021	Chicago
170310107022	Chicago
170310107022	Chicago
170310201001	Chicago
170310201002	Chicago
170310202002	Chicago
170310203022	Chicago
170310204002	Chicago
170310204003	Chicago
170310205001	Chicago
170310205002	Chicago
170310205003	Chicago
170310205004	Chicago
170310206011	Chicago
170310206012	Chicago
170310206013	Chicago
170310206021	Chicago
170310206022	Chicago
170310206023	Chicago
170310206024	Chicago
170310207021	Chicago
170310207022	Chicago
170310207023	Chicago
170310207024	Chicago
170310208011	Chicago
170310208012	Chicago
170310208013	Chicago
170310208014	Chicago
170310208021	Chicago
170310208022	Chicago
170310208023	Chicago
170310208024	Chicago
170310209011	Chicago

170310209012	Chicago
170310209013	Chicago
170310209021	Chicago
170310209022	Chicago
170310301011	Chicago
170310301023	Chicago
170310301041	Chicago
170310303001	Chicago
170310303002	Chicago
170310306012	Chicago
170310306013	Chicago
170310306031	-
	Chicago
170310307011	Chicago
170310307031	Chicago
170310307033	Chicago
170310307062	Chicago
170310312001	Chicago
170310312002	Chicago
170310312003	Chicago
170310313001	Chicago
170310313004	Chicago
170310313005	Chicago
170310315012	Chicago
170310315013	Chicago
170310315021	Chicago
170310317001	Chicago
170310317002	Chicago
170310317003	Chicago
170310317004	Chicago
170310402011	Chicago
170310402012	Chicago
170310402012	
	Chicago
170310402021	Chicago
170310402022	Chicago
170310402023	Chicago
170310402024	Chicago
170310403001	Chicago
170310403002	Chicago
170310403003	Chicago
170310404014	Chicago
170310605001	Chicago
170310707002	Chicago
170310710001	Chicago
170310712002	Chicago
170310714002	Chicago
170310801004	Chicago

170310804001	Chicago
170310804002	Chicago
170310804003	Chicago
170311005001	Chicago
170311005002	Chicago
170311005003	Chicago
170311005004	Chicago
170311005005	Chicago
170311102001	Chicago
170311103005	Chicago
170311105011	Chicago
170311105012	Chicago
170311105013	Chicago
170311105014	Chicago
170311301001	-
	Chicago
170311301002	Chicago
170311301003	Chicago
170311303001	Chicago
170311303002	Chicago
170311401001	Chicago
170311401002	Chicago
170311402001	Chicago
170311402002	Chicago
170311402003	Chicago
170311403011	Chicago
170311403012	Chicago
170311403021	Chicago
170311403022	Chicago
170311403023	Chicago
170311405001	Chicago
170311405002	Chicago
170311405003	Chicago
170311406011	Chicago
170311406021	Chicago
170311406022	Chicago
170311406023	Chicago
170311406024	Chicago
170311407011	Chicago
170311407012	Chicago
170311407021	Chicago
170311407022	Chicago
170311407023	Chicago
170311407023	Chicago
170311407024	Chicago
170311408001	-
	Chicago
170311408003	Chicago

170311408004	Chicago
170311408005	Chicago
170311502003	Chicago
170311504011	Chicago
170311504022	Chicago
170311505021	Chicago
170311505022	Chicago
170311507001	Chicago
170311507002	Chicago
170311507003	Chicago
170311507004	Chicago
170311508003	Chicago
170311508004	Chicago
170311510011	Chicago
	-
170311510012	Chicago
170311510021	Chicago
170311510022	Chicago
170311510023	Chicago
170311510024	Chicago
170311511001	Chicago
170311511002	Chicago
170311511003	Chicago
170311511004	Chicago
170311512001	Chicago
170311512002	Chicago
170311512003	Chicago
170311601001	Chicago
170311601002	Chicago
170311604001	Chicago
170311605011	Chicago
170311605012	Chicago
170311605021	Chicago
170311605022	Chicago
170311605023	Chicago
170311607001	Chicago
170311607002	Chicago
170311607003	Chicago
170311607004	Chicago
	-
170311607005	Chicago
170311608001	Chicago
170311608003	Chicago
170311608004	Chicago
170311608005	Chicago
170311612001	Chicago
170311612002	Chicago
170311613001	Chicago

170311613002	Chicago
170311613003	Chicago
170311613004	Chicago
170311701001	Chicago
170311702002	Chicago
170311703001	Chicago
170311703002	Chicago
170311703003	Chicago
170311703004	Chicago
170311703005	Chicago
170311704001	Chicago
170311707002	Chicago
170311708001	Chicago
170311708001	
	Chicago
170311708003	Chicago
170311709001	Chicago
170311710001	Chicago
170311710002	Chicago
170311710003	Chicago
170311710004	Chicago
170311710005	Chicago
170311710006	Chicago
170311711001	Chicago
170311711002	Chicago
170311711003	Chicago
170311801001	Chicago
170311801002	Chicago
170311801003	Chicago
170311801004	Chicago
170311801005	Chicago
170311901001	Chicago
170311902001	Chicago
170311902002	Chicago
170311902003	Chicago
170311902004	Chicago
170311903001	Chicago
170311903002	Chicago
170311903003	Chicago
	-
170311903004	Chicago
170311904011	Chicago
170311904021	Chicago
170311904022	Chicago
170311906011	Chicago
170311906012	Chicago
170311906013	Chicago
170311906021	Chicago

170311906022	Chicago
170311906023	Chicago
170311907011	Chicago
170311907012	Chicago
170311907021	Chicago
170311907022	Chicago
170311907023	Chicago
170311908001	Chicago
170311908002	Chicago
170311908003	Chicago
170311908004	Chicago
170311908005	Chicago
170311909001	-
	Chicago
170311910001	Chicago
170311911001	Chicago
170311911002	Chicago
170311911003	Chicago
170311911004	Chicago
170311911005	Chicago
170311911006	Chicago
170311912001	Chicago
170311912002	Chicago
170311913011	Chicago
170311913012	Chicago
170311913013	Chicago
170311913021	Chicago
170311913022	Chicago
170312001001	Chicago
170312001002	Chicago
170312001003	Chicago
170312002001	Chicago
170312002002	Chicago
170312002003	Chicago
170312002004	Chicago
170312002004	Chicago
	-
170312003002	Chicago
170312004011	Chicago
170312004012	Chicago
170312004021	Chicago
170312004022	Chicago
170312004023	Chicago
170312104001	Chicago
170312104002	Chicago
170312105011	Chicago
170312105012	Chicago
170312105021	Chicago

170312105023	Chicago
170312106013	Chicago
170312106021	Chicago
170312108001	Chicago
170312205003	Chicago
170312206021	Chicago
170312207013	Chicago
170312207021	Chicago
170312207022	Chicago
170312207023	Chicago
170312207024	Chicago
170312209011	Chicago
170312209012	Chicago
170312209013	Chicago
170312209021	Chicago
170312209022	Chicago
	-
170312210001 170312210002	Chicago
	Chicago
170312211002	Chicago
170312213002	Chicago
170312215001	Chicago
170312215002	Chicago
170312227001	Chicago
170312227002	Chicago
170312228001	Chicago
170312229001	Chicago
170312302001	Chicago
170312303001	Chicago
170312304001	Chicago
170312304002	Chicago
170312305001	Chicago
170312305002	Chicago
170312306001	Chicago
170312306002	Chicago
170312306003	Chicago
170312306004	Chicago
170312306005	Chicago
170312306006	Chicago
170312307001	Chicago
170312307002	Chicago
170312307003	Chicago
170312307004	Chicago
170312308001	Chicago
170312309001	Chicago
170312309002	Chicago
170312309002	Chicago
110315202002	Chicago

170312311001	Chicago
170312312001	Chicago
170312312002	Chicago
170312312003	Chicago
170312312004	Chicago
170312312005	Chicago
170312315001	Chicago
170312315002	Chicago
170312315003	Chicago
170312315004	Chicago
170312315005	Chicago
170312407001	Chicago
170312409001	Chicago
170312410001	Chicago
170312410002	Chicago
170312410002	Chicago
170312414001	-
	Chicago
170312420001	Chicago
170312420002	Chicago
170312420003	Chicago
170312425001	Chicago
170312425002	Chicago
170312426001	Chicago
170312426002	Chicago
170312426003	Chicago
170312426004	Chicago
170312427001	Chicago
170312433001	Chicago
170312434001	Chicago
170312434002	Chicago
170312435001	Chicago
170312502001	Chicago
170312502002	Chicago
170312503001	Chicago
170312503002	Chicago
170312503003	Chicago
170312504001	Chicago
170312504002	Chicago
170312504003	Chicago
170312504004	Chicago
170312504005	Chicago
170312505002	Chicago
170312506001	Chicago
170312506001	Chicago
170312506002	Chicago
170312506003	-
1/0512500004	Chicago

170312507001	Chicago
170312507002	Chicago
170312507003	Chicago
170312507004	Chicago
170312507005	Chicago
170312508001	Chicago
170312508002	Chicago
170312510001	Chicago
170312511001	Chicago
170312511002	Chicago
170312511003	Chicago
170312511004	Chicago
170312512001	Chicago
170312512002	Chicago
170312512002	Chicago
170312512003	Chicago
170312512004	-
	Chicago
170312513002	Chicago
170312513003	Chicago
170312513004	Chicago
170312513005	Chicago
170312514001	Chicago
170312514002	Chicago
170312514003	Chicago
170312514004	Chicago
170312515001	Chicago
170312515002	Chicago
170312515003	Chicago
170312515004	Chicago
170312516001	Chicago
170312516002	Chicago
170312516003	Chicago
170312517001	Chicago
170312518001	Chicago
170312518002	Chicago
170312518003	Chicago
170312518004	Chicago
170312518005	Chicago
170312519001	Chicago
170312519002	Chicago
170312519003	Chicago
170312519004	Chicago
170312520001	Chicago
170312520002	Chicago
170312520002	Chicago
170312520003	Chicago
1/0312320004	Chicago

170312521011	Chicago
170312521021	Chicago
170312521022	Chicago
170312521023	Chicago
170312521024	Chicago
170312522011	Chicago
170312522012	Chicago
170312522013	Chicago
170312522021	Chicago
170312522022	Chicago
170312522023	Chicago
170312522024	Chicago
170312522025	Chicago
170312601001	Chicago
170312602001	Chicago
170312603001	Chicago
170312604001	
	Chicago
170312605001	Chicago
170312606001	Chicago
170312606002	Chicago
170312607001	Chicago
170312607002	Chicago
170312608001	Chicago
170312608002	Chicago
170312609001	Chicago
170312609002	Chicago
170312610001	Chicago
170312610002	Chicago
170312705001	Chicago
170312712001	Chicago
170312713001	Chicago
170312714001	Chicago
170312715001	Chicago
170312718001	Chicago
170312804001	Chicago
170312808001	Chicago
170312809001	Chicago
170312831001	Chicago
170312831002	Chicago
170312832001	Chicago
170312838001	Chicago
170312838002	Chicago
170312909001	Chicago
170312909002	Chicago
170312909002	Chicago
170312909003	-
1/0512909004	Chicago

170312912001	Chicago
170312912002	Chicago
170312916001	Chicago
170312922001	Chicago
170312922002	Chicago
170312922003	Chicago
170312924001	Chicago
170312924002	Chicago
170312925001	Chicago
170312925002	Chicago
170312925002	-
	Chicago
170313005001	Chicago
170313005002	Chicago
170313006001	Chicago
170313006002	Chicago
170313007001	Chicago
170313007002	Chicago
170313007003	Chicago
170313008001	Chicago
170313008002	Chicago
170313009001	Chicago
170313009002	Chicago
170313011001	Chicago
170313011002	Chicago
170313012001	Chicago
170313012002	Chicago
170313012003	Chicago
170313016001	Chicago
	•
170313016002	Chicago
170313017011	Chicago
170313017012	Chicago
170313017013	Chicago
170313017021	Chicago
170313017022	Chicago
170313017023	Chicago
170313018011	Chicago
170313018012	Chicago
170313018021	Chicago
170313018022	Chicago
170313018023	Chicago
170313018031	Chicago
170313018032	Chicago
170313018033	Chicago
170313102001	Chicago
170313102001	Chicago
	-
170313103001	Chicago

170313104001	Chicago
170313105001	Chicago
170313106001	Chicago
170313106002	Chicago
170313106003	Chicago
170313107001	Chicago
170313108001	Chicago
170313108002	Chicago
170313108003	Chicago
170313109001	Chicago
170313109002	Chicago
170313109003	Chicago
170313301024	Chicago
170313301033	Chicago
170313301033	-
	Chicago
170313403001	Chicago
170313404001	Chicago
170313405001	Chicago
170313406001	Chicago
170313504001	Chicago
170313511001	Chicago
170313511002	Chicago
170313514001	Chicago
170313515001	Chicago
170313515002	Chicago
170313602001	Chicago
170313801001	Chicago
170313802001	Chicago
170313806001	Chicago
170313806002	Chicago
170313806003	Chicago
170313806004	Chicago
170313812001	Chicago
170313812002	Chicago
170313814001	Chicago
170313815001	Chicago
170313818001	Chicago
170313818002	Chicago
170313819001	Chicago
170313819002	Chicago
170313903001	Chicago
170313903002	Chicago
170313904001	Chicago
170313904001	Chicago
170313904002	Chicago
	-
170314004001	Chicago

170314004002	Chicago
170314005001	Chicago
170314005002	Chicago
170314008001	Chicago
170314008002	Chicago
170314106002	Chicago
170314109002	Chicago
170314110003	Chicago
170314201001	Chicago
170314202001	Chicago
170314203001	Chicago
170314204001	Chicago
170314205001	-
	Chicago
170314205002	Chicago
170314206001	Chicago
170314206002	Chicago
170314207001	Chicago
170314207002	Chicago
170314207003	Chicago
170314207004	Chicago
170314207005	Chicago
170314208001	Chicago
170314208002	Chicago
170314212001	Chicago
170314212002	Chicago
170314301011	Chicago
170314301012	Chicago
170314301013	Chicago
170314301014	Chicago
170314301021	Chicago
170314301022	Chicago
170314301023	Chicago
170314302001	Chicago
170314302002	Chicago
170314302002	•
	Chicago
170314302004	Chicago
170314302005	Chicago
170314303001	Chicago
170314303002	Chicago
170314303003	Chicago
170314304001	Chicago
170314304002	Chicago
170314304003	Chicago
170314304004	Chicago
170314305001	Chicago
170314305002	Chicago
	-

170314305003	Chicago
170314306001	Chicago
170314306002	Chicago
170314307001	Chicago
170314307002	Chicago
170314308001	Chicago
170314308002	Chicago
170314309001	Chicago
170314309002	Chicago
170314313011	Chicago
170314313012	Chicago
170314313012	-
	Chicago
170314313021	Chicago
170314313022	Chicago
170314313023	Chicago
170314314001	Chicago
170314314002	Chicago
170314314003	Chicago
170314314004	Chicago
170314401011	Chicago
170314401012	Chicago
170314401013	Chicago
170314401014	Chicago
170314401021	Chicago
170314401022	Chicago
170314401023	Chicago
170314401023	Chicago
170314402011	-
	Chicago
170314402012	Chicago
170314402013	Chicago
170314402014	Chicago
170314402021	Chicago
170314402022	Chicago
170314402023	Chicago
170314403004	Chicago
170314403005	Chicago
170314407001	Chicago
170314408001	Chicago
170314408002	Chicago
170314409001	Chicago
170314409002	Chicago
170314409003	Chicago
170314503001	Chicago
170314503002	Chicago
	-
170314503003	Chicago
170314503004	Chicago

170314601001	Chicago
170314601002	Chicago
170314601003	Chicago
170314601004	Chicago
170314602001	Chicago
170314602002	Chicago
170314603011	Chicago
170314603012	Chicago
170314603013	Chicago
170314603021	Chicago
170314603022	Chicago
170314603023	Chicago
170314603024	Chicago
170314604001	Chicago
170314604001	-
	Chicago
170314604003	Chicago
170314604004	Chicago
170314605002	Chicago
170314608001	Chicago
170314608002	Chicago
170314608003	Chicago
170314608004	Chicago
170314610001	Chicago
170314701001	Chicago
170314701002	Chicago
170314804005	Chicago
170314805001	Chicago
170314805002	Chicago
170314805003	Chicago
170314902002	Chicago
170314905001	Chicago
170314905002	Chicago
170314906001	Chicago
170314907001	Chicago
170314907002	Chicago
170314907003	Chicago
170314908001	Chicago
170314908002	Chicago
170314908003	Chicago
170314908004	Chicago
170314908005	Chicago
170314909011	Chicago
170314909012	Chicago
170314909012	Chicago
170314909013	Chicago
	-
170314909023	Chicago

170314910001Chicago170314910002Chicago170314910004Chicago170314911001Chicago170314911002Chicago170314911003Chicago170314911004Chicago170314911005Chicago170314912001Chicago170314912002Chicago170314912003Chicago170314912003Chicago170314913004Chicago170314913003Chicago170314913004Chicago170314913003Chicago170314913004Chicago170314913004Chicago170314914003Chicago170315002001Chicago170315002002Chicago170315002003Chicago170315003001Chicago170315101001Chicago170315101002Chicago170315102003Chicago170315103004Chicago170315103003Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315203003Chicago170315203004Chicago170315203003Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203003Chicago170315203004Chicago170315203003Chicago170315203004Chicago170315204003Chicago170315204004Chicago170315204003Chicago170315		
170314910003Chicago170314911001Chicago170314911002Chicago170314911003Chicago170314911004Chicago170314912001Chicago170314912002Chicago170314912003Chicago170314912003Chicago170314913004Chicago170314913003Chicago170314913004Chicago170314913004Chicago170314913004Chicago170314913004Chicago170314914003Chicago170314914003Chicago170315002001Chicago170315002002Chicago170315003001Chicago170315101001Chicago170315102002Chicago170315103002Chicago170315103003Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315202001Chicago170315203001Chicago170315203001Chicago170315203001Chicago170315203001Chicago170315203002Chicago170315203003Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204003Chicago170315	170314910001	Chicago
No170314911001Chicago170314911002Chicago170314911003Chicago170314911004Chicago170314912001Chicago170314912002Chicago170314912003Chicago170314912003Chicago170314913004Chicago170314913002Chicago170314913003Chicago170314913004Chicago170314913004Chicago170314913004Chicago170314914001Chicago170314914002Chicago170315002001Chicago170315002002Chicago170315003001Chicago170315101001Chicago170315102001Chicago170315102001Chicago170315103002Chicago170315103003Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315202001Chicago170315203003Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago <td>170314910002</td> <td>Chicago</td>	170314910002	Chicago
170314911001 Chicago 170314911002 Chicago 170314911004 Chicago 170314911005 Chicago 170314911005 Chicago 170314912001 Chicago 170314912002 Chicago 170314912003 Chicago 170314913001 Chicago 170314913002 Chicago 170314913003 Chicago 170314913004 Chicago 170314913004 Chicago 170314913004 Chicago 170314914001 Chicago 170314914002 Chicago 170314914003 Chicago 170315002001 Chicago 170315002002 Chicago 170315003001 Chicago 170315003002 Chicago 170315102003 Chicago 170315102003 Chicago 170315103004 Chicago 170315103001 Chicago 170315103002 Chicago 170315103003 Chicago 170315103004 Chicago 1703152020003 Chicago	170314910003	Chicago
No170314911002Chicago170314911004Chicago170314912001Chicago170314912002Chicago170314912003Chicago170314912003Chicago170314913001Chicago170314913002Chicago170314913003Chicago170314913004Chicago170314913004Chicago170314914001Chicago170314914002Chicago170314914003Chicago170315002001Chicago170315002001Chicago170315003001Chicago170315003002Chicago170315101002Chicago170315102003Chicago170315102004Chicago170315103005Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315202001Chicago170315202002Chicago170315203003Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago <td>170314910004</td> <td>Chicago</td>	170314910004	Chicago
170314911003Chicago170314911004Chicago170314912001Chicago170314912002Chicago170314912003Chicago170314913001Chicago170314913002Chicago170314913003Chicago170314913004Chicago170314913004Chicago170314914001Chicago170314914002Chicago170314914003Chicago170315002001Chicago170315002002Chicago170315003001Chicago170315101001Chicago170315102002Chicago170315102003Chicago170315102004Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315202001Chicago170315203003Chicago170315203004Chicago170315203005Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315	170314911001	Chicago
170314911003Chicago170314911004Chicago170314912001Chicago170314912002Chicago170314912003Chicago170314913001Chicago170314913002Chicago170314913003Chicago170314913004Chicago170314913004Chicago170314914001Chicago170314914002Chicago170314914003Chicago170315002001Chicago170315002002Chicago170315003001Chicago170315101001Chicago170315102002Chicago170315102003Chicago170315102004Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315202001Chicago170315203003Chicago170315203004Chicago170315203005Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315	170314911002	Chicago
170314911004Chicago170314912001Chicago170314912002Chicago170314912003Chicago170314913001Chicago170314913002Chicago170314913003Chicago170314913004Chicago170314914001Chicago170314914002Chicago170314914003Chicago170314914004Chicago170315002001Chicago170315002002Chicago170315003001Chicago170315101002Chicago170315101002Chicago170315102003Chicago170315102004Chicago170315103005Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315202001Chicago170315202002Chicago170315203004Chicago170315203005Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315	170314911003	
170314911005Chicago170314912001Chicago170314912003Chicago170314913001Chicago170314913002Chicago170314913004Chicago170314913004Chicago170314914001Chicago170314914002Chicago170314914003Chicago170315002001Chicago170315002002Chicago170315002002Chicago170315003002Chicago170315003002Chicago170315101001Chicago170315102002Chicago170315102002Chicago170315103003Chicago170315103004Chicago170315103005Chicago170315103004Chicago170315103004Chicago170315202001Chicago170315202002Chicago170315203003Chicago170315203004Chicago170315203005Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315	170314911004	-
170314912001 Chicago 170314912002 Chicago 170314913001 Chicago 170314913002 Chicago 170314913002 Chicago 170314913003 Chicago 170314913004 Chicago 170314913004 Chicago 170314914001 Chicago 170314914002 Chicago 170314914003 Chicago 170315002001 Chicago 170315002002 Chicago 170315003001 Chicago 170315003002 Chicago 170315003001 Chicago 170315101001 Chicago 170315102001 Chicago 170315102002 Chicago 170315103003 Chicago 170315103004 Chicago 170315103004 Chicago 170315203001 Chicago 170315203003 Chicago 170315203004 Chicago 170315203005 Chicago 170315203004 Chicago 170315203004	170314911005	
170314912002 Chicago 170314913001 Chicago 170314913002 Chicago 170314913003 Chicago 170314913004 Chicago 170314913004 Chicago 170314913004 Chicago 170314914001 Chicago 170314914002 Chicago 170314914003 Chicago 170315002001 Chicago 170315002002 Chicago 170315003001 Chicago 170315003002 Chicago 170315003002 Chicago 170315003002 Chicago 170315101002 Chicago 170315102003 Chicago 170315102004 Chicago 170315103003 Chicago 170315103004 Chicago 170315201001 Chicago 170315202002 Chicago 170315203003 Chicago 170315203004 Chicago 170315203005 Chicago 170315203004 Chicago 170315203005		-
170314912003Chicago170314913001Chicago170314913003Chicago170314913004Chicago170314914001Chicago170314914002Chicago170314914003Chicago170314914003Chicago170315002001Chicago170315002002Chicago170315003001Chicago170315003002Chicago170315101001Chicago170315102002Chicago170315102003Chicago170315102004Chicago170315103005Chicago170315103001Chicago170315103002Chicago170315103003Chicago170315103004Chicago170315202001Chicago170315202001Chicago170315203002Chicago170315203003Chicago170315203004Chicago170315203005Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315		-
170314913001 Chicago 170314913002 Chicago 170314913004 Chicago 170314913004 Chicago 170314914001 Chicago 170314914002 Chicago 170314914003 Chicago 170314914003 Chicago 170314914003 Chicago 170315002001 Chicago 170315002002 Chicago 170315003001 Chicago 170315003002 Chicago 170315101001 Chicago 170315102002 Chicago 170315102003 Chicago 170315102004 Chicago 170315103004 Chicago 170315103004 Chicago 170315103004 Chicago 170315203003 Chicago 170315202001 Chicago 170315203002 Chicago 170315203003 Chicago 170315203004 Chicago 170315203005 Chicago 170315203004 Chicago 170315203004		_
170314913002 Chicago 170314913003 Chicago 170314913004 Chicago 170314914001 Chicago 170314914002 Chicago 170314914003 Chicago 170314914004 Chicago 170315002001 Chicago 170315002002 Chicago 170315002002 Chicago 170315003001 Chicago 170315003002 Chicago 170315101002 Chicago 170315102001 Chicago 170315102002 Chicago 170315102003 Chicago 170315102004 Chicago 170315103005 Chicago 170315103004 Chicago 170315103004 Chicago 170315201001 Chicago 170315202002 Chicago 170315203003 Chicago 170315203004 Chicago 170315203005 Chicago 170315203004 Chicago 170315203004 Chicago 170315203004		-
170314913003Chicago170314914001Chicago170314914002Chicago170314914003Chicago170315002001Chicago170315002002Chicago170315003001Chicago170315003001Chicago170315003002Chicago170315003001Chicago170315101001Chicago170315102002Chicago170315102003Chicago170315102004Chicago170315103005Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315202001Chicago170315202002Chicago170315203003Chicago170315203004Chicago170315203005Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204005Chicago170315204005Chicago170315204004Chicago170315204005Chicago170315204005Chicago170315204005Chicago<		_
170314913004 Chicago 170314914001 Chicago 170314914002 Chicago 170314914003 Chicago 170315002001 Chicago 170315002002 Chicago 170315002002 Chicago 170315003001 Chicago 170315003002 Chicago 170315003002 Chicago 170315101002 Chicago 170315102003 Chicago 170315102004 Chicago 170315102005 Chicago 170315102001 Chicago 170315103002 Chicago 170315103003 Chicago 170315103004 Chicago 170315201001 Chicago 170315201001 Chicago 170315202002 Chicago 170315203003 Chicago 170315203004 Chicago 170315203005 Chicago 170315203004 Chicago 170315203004 Chicago 170315203004 Chicago 170315204004		-
170314914001Chicago170314914002Chicago170315002001Chicago170315002002Chicago170315003001Chicago170315003002Chicago17031501001Chicago170315101001Chicago170315102002Chicago170315102001Chicago170315102002Chicago170315102003Chicago170315103001Chicago170315103002Chicago170315103003Chicago170315103004Chicago170315201001Chicago170315202002Chicago170315203003Chicago170315203004Chicago170315203005Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago		-
170314914002Chicago170314914003Chicago170315002001Chicago170315003001Chicago170315003001Chicago170315003002Chicago170315101001Chicago170315101002Chicago170315102002Chicago170315102003Chicago170315102004Chicago170315103005Chicago170315103004Chicago170315103004Chicago170315103004Chicago170315201001Chicago170315202002Chicago170315202003Chicago170315203004Chicago170315203005Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315205003Chicago		
170314914003Chicago170315002001Chicago170315003002Chicago170315003002Chicago170315003002Chicago170315101001Chicago170315102001Chicago170315102002Chicago170315102003Chicago170315102003Chicago170315103003Chicago170315103004Chicago170315103004Chicago170315201001Chicago170315202002Chicago170315202003Chicago170315203004Chicago170315203003Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204003Chicago		_
170315002001Chicago170315002002Chicago170315003001Chicago170315003002Chicago170315101001Chicago170315102001Chicago170315102002Chicago170315102003Chicago170315102003Chicago170315103001Chicago170315103002Chicago170315103003Chicago170315103004Chicago170315201001Chicago170315202001Chicago170315202002Chicago170315203003Chicago170315203004Chicago170315203005Chicago170315203004Chicago170315203004Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204004Chicago170315204005Chicago		-
170315002002 Chicago 170315003001 Chicago 170315003002 Chicago 170315101001 Chicago 170315101002 Chicago 170315101002 Chicago 170315102001 Chicago 170315102002 Chicago 170315102002 Chicago 170315103001 Chicago 170315103001 Chicago 170315103002 Chicago 170315103003 Chicago 170315103004 Chicago 170315202001 Chicago 170315202001 Chicago 170315202002 Chicago 170315203003 Chicago 170315203004 Chicago 170315203005 Chicago 170315203004 Chicago 170315203005 Chicago 170315203004 Chicago 170315204001 Chicago 170315204002 Chicago 170315204003 Chicago 170315204004 Chicago 170315204003		_
170315003001Chicago170315003002Chicago170315101001Chicago170315102001Chicago170315102002Chicago170315102003Chicago170315103001Chicago170315103002Chicago170315103003Chicago170315103004Chicago170315201001Chicago170315202001Chicago170315202002Chicago170315203003Chicago170315203004Chicago170315203005Chicago170315203004Chicago170315203004Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204004Chicago170315204003Chicago170315204003Chicago170315204003Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204004Chicago170315204004Chicago		_
170315003002Chicago170315101001Chicago170315102001Chicago170315102002Chicago170315102003Chicago170315103001Chicago170315103002Chicago170315103003Chicago170315103004Chicago170315103004Chicago170315202001Chicago170315202001Chicago170315202002Chicago170315203003Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204004Chicago	170315002002	Chicago
170315101001Chicago170315101002Chicago170315102001Chicago170315102002Chicago170315103003Chicago170315103001Chicago170315103002Chicago170315103003Chicago170315103004Chicago170315201001Chicago170315202002Chicago170315202003Chicago170315203004Chicago170315203005Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204004Chicago	170315003001	Chicago
170315101002Chicago170315102001Chicago170315102002Chicago170315103001Chicago170315103001Chicago170315103002Chicago170315103003Chicago170315103004Chicago170315201001Chicago170315202001Chicago170315202002Chicago170315203003Chicago170315203004Chicago170315203005Chicago170315203004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago	170315003002	Chicago
170315102001 Chicago 170315102002 Chicago 170315102003 Chicago 170315103001 Chicago 170315103002 Chicago 170315103003 Chicago 170315103004 Chicago 170315103004 Chicago 170315201001 Chicago 170315202001 Chicago 170315202002 Chicago 170315202003 Chicago 170315203001 Chicago 170315203002 Chicago 170315203003 Chicago 170315203004 Chicago 170315203003 Chicago 170315203004 Chicago 170315204001 Chicago 170315204002 Chicago 170315204003 Chicago 170315204004 Chicago 170315204003 Chicago 170315204004 Chicago 170315204004 Chicago 170315204004 Chicago 170315204003 Chicago 170315204004	170315101001	Chicago
170315102002 Chicago 170315102003 Chicago 170315103001 Chicago 170315103002 Chicago 170315103003 Chicago 170315103004 Chicago 170315103004 Chicago 170315201001 Chicago 170315202001 Chicago 170315202002 Chicago 170315202003 Chicago 170315203004 Chicago 170315203005 Chicago 170315203004 Chicago 170315203005 Chicago 170315203004 Chicago 170315204001 Chicago 170315204002 Chicago 170315204003 Chicago 170315204004 Chicago 170315204004 Chicago 170315204003 Chicago 170315204004 Chicago 170315204004 Chicago 170315204004 Chicago 170315204004 Chicago 170315204004 Chicago	170315101002	Chicago
170315102003Chicago170315103001Chicago170315103002Chicago170315103004Chicago170315103004Chicago170315201001Chicago170315202002Chicago170315202003Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315203004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago	170315102001	Chicago
170315103001 Chicago 170315103002 Chicago 170315103003 Chicago 170315103004 Chicago 170315103004 Chicago 170315201001 Chicago 170315202001 Chicago 170315202002 Chicago 170315202003 Chicago 170315203001 Chicago 170315203002 Chicago 170315203003 Chicago 170315203004 Chicago 170315203004 Chicago 170315203004 Chicago 170315203005 Chicago 170315204001 Chicago 170315204002 Chicago 170315204003 Chicago 170315204004 Chicago 170315204004 Chicago 170315204004 Chicago 170315204004 Chicago 170315204004 Chicago 170315204004 Chicago 170315205003 Chicago	170315102002	Chicago
170315103002Chicago170315103003Chicago170315103004Chicago170315201001Chicago170315202002Chicago170315202003Chicago170315203001Chicago170315203002Chicago170315203003Chicago170315203004Chicago170315203004Chicago170315204001Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago	170315102003	Chicago
170315103002Chicago170315103003Chicago170315103004Chicago170315201001Chicago170315202001Chicago170315202002Chicago170315203001Chicago170315203002Chicago170315203003Chicago170315203004Chicago170315204001Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago	170315103001	Chicago
170315103003Chicago170315103004Chicago170315201001Chicago170315202001Chicago170315202003Chicago170315203001Chicago170315203002Chicago170315203003Chicago170315203004Chicago170315204001Chicago170315204001Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago	170315103002	-
170315103004Chicago170315201001Chicago170315202002Chicago170315202003Chicago170315203001Chicago170315203002Chicago170315203003Chicago170315203004Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago	170315103003	Chicago
170315201001Chicago170315202001Chicago170315202002Chicago170315203001Chicago170315203002Chicago170315203003Chicago170315203004Chicago170315204001Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago	170315103004	
170315202001Chicago170315202002Chicago170315203003Chicago170315203001Chicago170315203003Chicago170315203004Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204003Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago	170315201001	
170315202002Chicago170315202003Chicago170315203001Chicago170315203002Chicago170315203003Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204005Chicago		-
170315202003Chicago170315203001Chicago170315203002Chicago170315203003Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204005Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315205003Chicago		-
170315203001Chicago170315203002Chicago170315203003Chicago170315204004Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315205003Chicago		-
170315203002Chicago170315203003Chicago170315204004Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315204004Chicago170315204004Chicago170315205003Chicago		
170315203003Chicago170315203004Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315205003Chicago		
170315203004Chicago170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315205003Chicago		-
170315204001Chicago170315204002Chicago170315204003Chicago170315204004Chicago170315205003Chicago		-
170315204002Chicago170315204003Chicago170315204004Chicago170315205003Chicago		-
170315204003Chicago170315204004Chicago170315205003Chicago		
170315204004 Chicago 170315205003 Chicago		-
170315205003 Chicago		_
-		-
170315206001 Chicago		_
	1/0315206001	Chicago

170315301001	Chicago
170315301002	Chicago
170315302001	Chicago
170315302002	Chicago
170315302003	Chicago
170315302004	Chicago
170315302005	Chicago
170315303001	Chicago
170315303002	Chicago
170315303003	Chicago
170315303004	Chicago
170315304001	Chicago
170315304002	Chicago
170315305011	Chicago
170315305011	Chicago
170315305012	Chicago
170315305013	-
170315305014	Chicago
	Chicago
170315305031	Chicago
170315305032	Chicago
170315305033	Chicago
170315306001	Chicago
170315306002	Chicago
170315306003	Chicago
170315401011	Chicago
170315401012	Chicago
170315401021	Chicago
170315401022	Chicago
170315401023	Chicago
170315501003	Chicago
170315501004	Chicago
170315501006	Chicago
170315601001	Chicago
170315602001	Chicago
170315602002	Chicago
170315603001	Chicago
170315603002	Chicago
170315604001	Chicago
170315607001	Chicago
170315607002	Chicago
170315608002	Chicago
170315608003	Chicago
170315609001	Chicago
170315609002	Chicago
170315609002	-
	Chicago
170315609005	Chicago

170315609006	Chicago
170315610001	Chicago
170315610006	Chicago
170315611003	Chicago
170315611006	Chicago
170315701001	Chicago
170315702001	Chicago
170315703001	Chicago
170315703002	Chicago
170315703003	Chicago
170315703004	Chicago
170315704001	Chicago
170315704002	Chicago
170315705001	Chicago
170315705002	-
	Chicago
170315801001	Chicago
170315801002	Chicago
170315802001	Chicago
170315802002	Chicago
170315803001	Chicago
170315804001	Chicago
170315804002	Chicago
170315804003	Chicago
170315804004	Chicago
170315805011	Chicago
170315805012	Chicago
170315805013	Chicago
170315805014	Chicago
170315805021	Chicago
170315805022	Chicago
170315805023	Chicago
170315806001	Chicago
170315806002	Chicago
170315806003	Chicago
170315806004	Chicago
170315807001	Chicago
170315807001	-
	Chicago
170315807003	Chicago
170315808001	Chicago
170315905001	Chicago
170315906001	Chicago
170315906002	Chicago
170315906003	Chicago
170315907001	Chicago
170315907002	Chicago
170316004001	Chicago

170316004002	Chicago
170316004003	Chicago
170316006001	Chicago
170316006002	Chicago
170316007001	Chicago
170316007002	Chicago
170316009001	Chicago
170316009002	Chicago
170316009003	Chicago
170316009004	Chicago
170316103001	Chicago
170316103002	Chicago
170316103003	Chicago
	-
170316104001	Chicago
170316112001	Chicago
170316112002	Chicago
170316113001	Chicago
170316113002	Chicago
170316113003	Chicago
170316114001	Chicago
170316114002	Chicago
170316114003	Chicago
170316115001	Chicago
170316115002	Chicago
170316116001	Chicago
170316116002	Chicago
170316117001	Chicago
170316117002	Chicago
170316117003	Chicago
170316118001	Chicago
170316118002	Chicago
170316119001	Chicago
170316119002	Chicago
170316120001	Chicago
170316120001	-
170316120002	Chicago
	Chicago
170316122001	Chicago
170316122002	Chicago
170316122003	Chicago
170316201001	Chicago
170316201002	Chicago
170316201003	Chicago
170316202001	Chicago
170316202002	Chicago
170316203001	Chicago
170316203002	Chicago

170316203003	Chicago
170316203004	Chicago
170316203005	Chicago
170316203006	Chicago
170316204001	Chicago
170316204002	Chicago
170316204003	Chicago
170316204004	Chicago
170316303001	Chicago
170316303002	Chicago
170316304001	Chicago
170316304002	Chicago
170316304002	-
	Chicago
170316304004	Chicago
170316305001	Chicago
170316305002	Chicago
170316305003	Chicago
170316305004	Chicago
170316306001	Chicago
170316306002	Chicago
170316308001	Chicago
170316308002	Chicago
170316308003	Chicago
170316308004	Chicago
170316309001	Chicago
170316309002	Chicago
170316309003	Chicago
170316401001	Chicago
170316403001	Chicago
170316403002	Chicago
170316403003	Chicago
170316403005	Chicago
170316403006	Chicago
170316404001	Chicago
170316404002	Chicago
	-
170316405001	Chicago
170316405002	Chicago
170316406001	Chicago
170316406002	Chicago
170316406003	Chicago
170316407001	Chicago
170316407002	Chicago
170316407003	Chicago
170316407004	Chicago
170316408001	Chicago
170316408002	Chicago

170316501001	Chicago
170316501002	Chicago
170316501003	Chicago
170316501004	Chicago
170316502001	Chicago
170316502002	Chicago
170316502003	Chicago
170316502004	Chicago
170316502005	Chicago
170316502006	Chicago
170316503011	Chicago
170316503012	-
170316503012	Chicago
	Chicago
170316503014	Chicago
170316503021	Chicago
170316503022	Chicago
170316504001	Chicago
170316504002	Chicago
170316504003	Chicago
170316504004	Chicago
170316504005	Chicago
170316505001	Chicago
170316505002	Chicago
170316505003	Chicago
170316603011	Chicago
170316603021	Chicago
170316603022	Chicago
170316603023	Chicago
170316603024	Chicago
170316604001	Chicago
170316604002	Chicago
170316604002	
	Chicago
170316604004	Chicago
170316605001	Chicago
170316605002	Chicago
170316605003	Chicago
170316605004	Chicago
170316606001	Chicago
170316606002	Chicago
170316606003	Chicago
170316606004	Chicago
170316606005	Chicago
170316607001	Chicago
170316607002	Chicago
170316608001	Chicago
170316608002	Chicago
_, 001000002	00050

170316608003 Chicago 170316608004 Chicago 170316609001 Chicago 170316609002 Chicago 170316609003 Chicago 170316609003 Chicago 170316610001 Chicago 170316610002 Chicago 170316610003 Chicago 170316610004 Chicago 170316611005 Chicago 170316611001 Chicago 170316611002 Chicago 170316611003 Chicago 170316611004 Chicago 170316611005 Chicago 170316611004 Chicago 170316701001 Chicago 170316701001 Chicago 170316701001 Chicago 170316703001 Chicago 170316703001 Chicago 170316704001 Chicago 170316705001 Chicago 170316707001 Chicago 170316707001 Chicago 170316707002 Chicago 170316707001		
170316608005Chicago170316609002Chicago170316609003Chicago170316610001Chicago170316610003Chicago170316610004Chicago170316610005Chicago170316611001Chicago170316611002Chicago170316611003Chicago170316611004Chicago170316611005Chicago170316611004Chicago170316611005Chicago17031671001Chicago170316701001Chicago170316701002Chicago170316703001Chicago170316703001Chicago170316704001Chicago170316705001Chicago170316705001Chicago170316706002Chicago170316707002Chicago170316707002Chicago170316707002Chicago170316707001Chicago170316707002Chicago170316713001Chicago170316713002Chicago170316713001Chicago170316713002Chicago170316713003Chicago170316713004Chicago170316713005Chicago170316714001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316715004Chicago170316715005Chicago170316715001Chicago170316715002Chicago170316715003Chicago1703167	170316608003	Chicago
170316609001Chicago170316609002Chicago170316610002Chicago170316610003Chicago170316610004Chicago170316610005Chicago170316611001Chicago170316611002Chicago170316611003Chicago170316611004Chicago170316611005Chicago170316611004Chicago170316611005Chicago17031671001Chicago170316701002Chicago170316701001Chicago170316703001Chicago170316703001Chicago170316704001Chicago170316705001Chicago170316705001Chicago170316705001Chicago170316707002Chicago170316707001Chicago170316707002Chicago170316707001Chicago170316707001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316714002Chicago170316714001Chicago170316715001Chicago170316715001Chicago170316715001Chicago170316715001Chicago170316715001Chicago170316715001Chicago170316715001Chicago170316715001Chicago1703167	170316608004	Chicago
170316609002Chicago170316610001Chicago170316610002Chicago170316610003Chicago170316610004Chicago170316611001Chicago170316611002Chicago170316611003Chicago170316611004Chicago170316611005Chicago170316611004Chicago170316611005Chicago170316701001Chicago170316701001Chicago170316701001Chicago170316701001Chicago170316703001Chicago170316704001Chicago170316705001Chicago170316705001Chicago170316707002Chicago170316707001Chicago170316707002Chicago170316707001Chicago170316707002Chicago170316713001Chicago170316713001Chicago170316713002Chicago170316713003Chicago170316713004Chicago170316713005Chicago170316713004Chicago170316713005Chicago170316714001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316715004Chicago170316715005Chicago170316715006Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316715004Chicago170316	170316608005	Chicago
170316609003Chicago170316610001Chicago170316610003Chicago170316610004Chicago170316611001Chicago170316611002Chicago170316611003Chicago170316611004Chicago170316611005Chicago170316611005Chicago170316611004Chicago170316611005Chicago170316701001Chicago170316701002Chicago170316703001Chicago170316703001Chicago170316703001Chicago170316705001Chicago170316705001Chicago170316705001Chicago170316707002Chicago170316707001Chicago170316707002Chicago170316707001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713002Chicago170316714001Chicago170316715001Chicago170316715001Chicago170316715001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316715004Chicago170316715005Chicago170316715001Chicago170316715002Chicago170316	170316609001	Chicago
170316610001Chicago170316610003Chicago170316610004Chicago170316610005Chicago170316611001Chicago170316611003Chicago170316611004Chicago170316611005Chicago170316611005Chicago170316611005Chicago17031671001Chicago170316701001Chicago170316701002Chicago170316703001Chicago170316703001Chicago170316705001Chicago170316705001Chicago170316706002Chicago170316707001Chicago170316707002Chicago170316707001Chicago170316707002Chicago170316707001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713002Chicago170316713003Chicago170316713004Chicago170316713005Chicago170316714001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316715005Chicago1703167	170316609002	Chicago
170316610001Chicago170316610003Chicago170316610004Chicago170316610005Chicago170316611001Chicago170316611003Chicago170316611004Chicago170316611005Chicago170316611005Chicago170316611005Chicago17031671001Chicago170316701001Chicago170316701002Chicago170316703001Chicago170316703001Chicago170316705001Chicago170316705001Chicago170316706002Chicago170316707001Chicago170316707002Chicago170316707001Chicago170316707002Chicago170316707001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713002Chicago170316713003Chicago170316713004Chicago170316713005Chicago170316714001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316715005Chicago1703167	170316609003	Chicago
170316610002Chicago170316610004Chicago170316610005Chicago170316611001Chicago170316611002Chicago170316611004Chicago170316611005Chicago170316611004Chicago170316611005Chicago17031671001Chicago170316701002Chicago170316701001Chicago170316703001Chicago170316703001Chicago170316703001Chicago170316705001Chicago170316705001Chicago170316706002Chicago170316707001Chicago170316707001Chicago170316707001Chicago170316708001Chicago170316708002Chicago170316713001Chicago170316713002Chicago170316713001Chicago170316713001Chicago170316713002Chicago170316713003Chicago170316714004Chicago170316714005Chicago170316714001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316716005Chicago1703167	170316610001	
170316610003Chicago170316610004Chicago170316611001Chicago170316611002Chicago170316611004Chicago170316611005Chicago170316611004Chicago170316611005Chicago170316701001Chicago170316701002Chicago170316701002Chicago170316703001Chicago170316703001Chicago170316703001Chicago170316704001Chicago170316705001Chicago170316705001Chicago170316706002Chicago170316707002Chicago170316707002Chicago170316708001Chicago170316708001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713002Chicago170316713001Chicago170316713002Chicago170316714001Chicago170316715001Chicago170316715001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316716005Chicago170316716005Chicago170316	170316610002	-
170316610004 Chicago 170316611001 Chicago 170316611002 Chicago 170316611003 Chicago 170316611004 Chicago 170316611005 Chicago 170316611005 Chicago 170316611005 Chicago 170316701001 Chicago 170316701002 Chicago 170316701002 Chicago 170316703001 Chicago 170316703002 Chicago 170316704001 Chicago 170316705001 Chicago 170316705001 Chicago 170316706002 Chicago 170316707001 Chicago 170316707002 Chicago 170316707001 Chicago 170316707002 Chicago 170316707001 Chicago 170316707002 Chicago 170316707001 Chicago 170316713001 Chicago 170316713001 Chicago 170316713002 Chicago 170316714001	170316610003	-
170316610005 Chicago 170316611001 Chicago 170316611003 Chicago 170316611004 Chicago 170316611005 Chicago 170316611005 Chicago 170316611005 Chicago 170316611005 Chicago 170316701001 Chicago 170316701002 Chicago 170316703001 Chicago 170316703001 Chicago 170316703001 Chicago 170316705001 Chicago 170316705001 Chicago 170316707001 Chicago 170316707001 Chicago 170316707002 Chicago 170316707001 Chicago 170316707002 Chicago 170316708001 Chicago 170316709002 Chicago 170316713001 Chicago 170316713002 Chicago 170316713003 Chicago 170316713003 Chicago 170316714001 Chicago 170316714002		-
170316611001Chicago170316611002Chicago170316611004Chicago170316611005Chicago170316701001Chicago170316701002Chicago170316701002Chicago170316702001Chicago170316703002Chicago170316703001Chicago170316704001Chicago170316705001Chicago170316706002Chicago170316707001Chicago170316707002Chicago170316707002Chicago170316707001Chicago170316708002Chicago170316709001Chicago170316719001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713002Chicago170316713003Chicago170316714001Chicago170316715001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316715004Chicago170316715005Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316716004Chicago170316716005Chicago170316716007Chicago170316716003Chicago170316716004Chicago170316716005Chicago170316716007Chicago170316716001Chicago170316716002Chicago170316		-
170316611002 Chicago 170316611003 Chicago 170316611005 Chicago 170316611005 Chicago 170316701001 Chicago 170316701002 Chicago 170316701001 Chicago 170316701002 Chicago 170316703001 Chicago 170316703001 Chicago 170316703001 Chicago 170316704001 Chicago 170316705001 Chicago 170316706001 Chicago 170316707002 Chicago 170316707001 Chicago 170316707002 Chicago 170316707001 Chicago 170316707002 Chicago 170316707001 Chicago 170316707002 Chicago 170316713001 Chicago 170316713002 Chicago 170316713003 Chicago 170316713004 Chicago 170316714001 Chicago 170316715001 Chicago 170316715002		-
170316611003Chicago170316611004Chicago170316701001Chicago170316701002Chicago170316702001Chicago170316703001Chicago170316703002Chicago170316703001Chicago170316704001Chicago170316705001Chicago170316706002Chicago170316706001Chicago170316707001Chicago170316707002Chicago170316708001Chicago170316708002Chicago170316708001Chicago170316708002Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713001Chicago170316713002Chicago170316713003Chicago170316714001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316716005Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316		-
170316611004Chicago170316701001Chicago170316701002Chicago170316702001Chicago170316703001Chicago170316703002Chicago170316704001Chicago170316704001Chicago170316705001Chicago170316706001Chicago170316706002Chicago170316707001Chicago170316707002Chicago170316707002Chicago170316708002Chicago170316709002Chicago170316719001Chicago170316713001Chicago170316713001Chicago170316713002Chicago170316713003Chicago170316713004Chicago170316714001Chicago170316715001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316716007Chicago170316		-
170316611005 Chicago 170316701001 Chicago 170316701002 Chicago 170316702001 Chicago 170316703001 Chicago 170316703001 Chicago 170316703001 Chicago 170316703002 Chicago 170316704001 Chicago 170316705001 Chicago 170316706002 Chicago 170316707001 Chicago 170316707002 Chicago 170316707001 Chicago 170316707002 Chicago 170316707001 Chicago 170316707002 Chicago 170316707001 Chicago 170316707002 Chicago 17031671001 Chicago 170316713002 Chicago 170316713003 Chicago 170316714001 Chicago 170316715001 Chicago 170316715002 Chicago 170316715003 Chicago 170316715004 Chicago 170316715005		-
170316701001 Chicago 170316702001 Chicago 170316703001 Chicago 170316703002 Chicago 170316703002 Chicago 170316703002 Chicago 170316704001 Chicago 170316705001 Chicago 170316706002 Chicago 170316706002 Chicago 170316707001 Chicago 170316707002 Chicago 170316707002 Chicago 170316708001 Chicago 170316709002 Chicago 170316709001 Chicago 170316709002 Chicago 170316713001 Chicago 170316713001 Chicago 170316713002 Chicago 170316713003 Chicago 170316714001 Chicago 170316715001 Chicago 170316715002 Chicago 170316715003 Chicago 170316715004 Chicago 170316715005 Chicago 170316715004		
170316701002Chicago170316702001Chicago170316703002Chicago170316704001Chicago170316705001Chicago170316706002Chicago170316706002Chicago170316707001Chicago170316707002Chicago170316707002Chicago170316707002Chicago170316707002Chicago170316708002Chicago170316709001Chicago170316719001Chicago170316712001Chicago170316713002Chicago170316713002Chicago170316713003Chicago170316714001Chicago170316715002Chicago170316715003Chicago170316715004Chicago170316715005Chicago170316715004Chicago170316715005Chicago170316716006Chicago170316716007Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316716004Chicago170316716005Chicago170316716007Chicago170316716003Chicago170316716004Chicago170316716005Chicago170316716007Chicago170316716003Chicago170316716004Chicago170316716005Chicago170316716007Chicago170316716003Chicago		-
170316702001Chicago170316703001Chicago170316704001Chicago170316705001Chicago170316706001Chicago170316706002Chicago170316707001Chicago170316707001Chicago170316707002Chicago170316708001Chicago170316708001Chicago170316708001Chicago170316709002Chicago170316719001Chicago170316712001Chicago170316713001Chicago170316713002Chicago170316713003Chicago170316714001Chicago170316715001Chicago170316715001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316715004Chicago170316715005Chicago170316716002Chicago170316716003Chicago170316716004Chicago170316716005Chicago170316716005Chicago170316716004Chicago170316716005Chicago170316716007Chicago170316716003Chicago170316716004Chicago170316716005Chicago170316716005Chicago170316716007Chicago170316716003Chicago170316716003Chicago170316716003Chicago		-
170316703001 Chicago 170316703002 Chicago 170316704001 Chicago 170316705001 Chicago 170316706001 Chicago 170316706002 Chicago 170316706002 Chicago 170316707001 Chicago 170316707002 Chicago 170316707001 Chicago 170316707002 Chicago 170316708001 Chicago 170316709002 Chicago 170316709001 Chicago 170316719001 Chicago 170316719001 Chicago 170316713001 Chicago 170316713001 Chicago 170316713002 Chicago 170316713003 Chicago 170316714001 Chicago 170316715001 Chicago 170316715002 Chicago 170316715003 Chicago 170316715004 Chicago 170316715005 Chicago 170316715004 Chicago 170316715005		-
170316703002 Chicago 170316704001 Chicago 170316705001 Chicago 170316706002 Chicago 170316706002 Chicago 170316707001 Chicago 170316707002 Chicago 170316707002 Chicago 170316707002 Chicago 170316707002 Chicago 170316708001 Chicago 170316709002 Chicago 170316709001 Chicago 170316719001 Chicago 170316712001 Chicago 170316713002 Chicago 170316713003 Chicago 170316714001 Chicago 170316715003 Chicago 170316715004 Chicago 170316715005 Chicago 170316715004 Chicago 170316715005 Chicago 170316715006 Chicago 170316715007 Chicago 170316715008 Chicago 170316716009 Chicago 170316716001		-
170316704001 Chicago 170316705001 Chicago 170316706002 Chicago 170316706002 Chicago 170316707001 Chicago 170316707002 Chicago 170316707002 Chicago 170316707002 Chicago 170316708001 Chicago 170316708002 Chicago 170316709001 Chicago 170316709002 Chicago 170316719001 Chicago 170316712001 Chicago 170316713001 Chicago 170316713002 Chicago 170316713003 Chicago 170316714001 Chicago 170316715001 Chicago 170316715002 Chicago 170316715003 Chicago 170316715004 Chicago 170316715005 Chicago 170316715004 Chicago 170316716005 Chicago 170316716006 Chicago 170316716007 Chicago 170316716008		Chicago
170316705001Chicago170316706001Chicago170316706002Chicago170316707001Chicago170316707002Chicago170316708001Chicago170316709001Chicago170316709001Chicago170316709002Chicago17031671001Chicago170316712001Chicago170316713002Chicago170316713001Chicago170316713002Chicago170316714001Chicago170316714002Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316716004Chicago170316716005Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316716004Chicago170316716005Chicago170316716005Chicago170316716005Chicago170316716005Chicago170316716005Chicago170316716005Chicago170316716005Chicago170316716005Chicago	170316703002	Chicago
170316706001 Chicago 170316706002 Chicago 170316707001 Chicago 170316707002 Chicago 170316707002 Chicago 170316708001 Chicago 170316708001 Chicago 170316708002 Chicago 170316709001 Chicago 170316709002 Chicago 170316719001 Chicago 170316712001 Chicago 170316713001 Chicago 170316713002 Chicago 170316713003 Chicago 170316714001 Chicago 170316715003 Chicago 170316715004 Chicago 170316715005 Chicago 170316715004 Chicago 170316715005 Chicago 170316715006 Chicago 170316716007 Chicago 170316716001 Chicago 170316716002 Chicago 170316716003 Chicago 170316716004 Chicago 170316716005	170316704001	Chicago
170316706002 Chicago 170316707001 Chicago 170316707002 Chicago 170316708001 Chicago 170316708002 Chicago 170316709001 Chicago 170316709002 Chicago 170316709002 Chicago 170316709002 Chicago 17031671001 Chicago 170316712001 Chicago 170316713001 Chicago 170316713002 Chicago 170316713003 Chicago 170316714001 Chicago 170316715003 Chicago 170316715001 Chicago 170316715002 Chicago 170316715003 Chicago 170316715004 Chicago 170316715005 Chicago 170316716001 Chicago 170316716002 Chicago 170316716003 Chicago 170316716003 Chicago 170316716003 Chicago 170316716003 Chicago 170316716003	170316705001	Chicago
170316707001 Chicago 170316707002 Chicago 170316708001 Chicago 170316708002 Chicago 170316709001 Chicago 170316709002 Chicago 170316709001 Chicago 170316709002 Chicago 170316719001 Chicago 170316712001 Chicago 170316713001 Chicago 170316713002 Chicago 170316713003 Chicago 170316714001 Chicago 170316715002 Chicago 170316715003 Chicago 170316715004 Chicago 170316715005 Chicago 170316715004 Chicago 170316715005 Chicago 170316716001 Chicago 170316716002 Chicago 170316716003 Chicago 170316716004 Chicago 170316716005 Chicago 170316716004 Chicago 170316716005 Chicago 170316716004	170316706001	Chicago
170316707002Chicago170316708001Chicago170316708002Chicago170316709001Chicago170316709002Chicago170316711001Chicago170316712001Chicago170316713001Chicago170316713002Chicago170316713003Chicago170316714001Chicago170316715001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316716004Chicago170316716005Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago	170316706002	Chicago
170316708001Chicago170316708002Chicago170316709001Chicago170316709002Chicago170316711001Chicago170316712001Chicago170316713001Chicago170316713002Chicago170316713003Chicago170316714001Chicago170316715002Chicago170316715003Chicago170316715004Chicago170316715005Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago	170316707001	Chicago
170316708002Chicago170316709001Chicago170316709002Chicago170316711001Chicago170316712001Chicago170316713001Chicago170316713002Chicago170316713003Chicago170316714001Chicago170316715001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316716004Chicago170316716005Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago	170316707002	Chicago
170316709001 Chicago 170316709002 Chicago 170316711001 Chicago 170316712001 Chicago 170316713001 Chicago 170316713001 Chicago 170316713002 Chicago 170316713003 Chicago 170316714001 Chicago 170316714001 Chicago 170316715001 Chicago 170316715002 Chicago 170316715003 Chicago 170316715004 Chicago 170316715005 Chicago 170316716006 Chicago 170316716007 Chicago 170316716008 Chicago 170316716009 Chicago 170316716001 Chicago 170316716002 Chicago 170316716003 Chicago 170316716003 Chicago 170316716003 Chicago 170316716003 Chicago	170316708001	Chicago
170316709001Chicago170316709002Chicago170316711001Chicago170316712001Chicago170316713002Chicago170316713003Chicago170316714001Chicago170316714002Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316716004Chicago170316716005Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago	170316708002	Chicago
170316709002Chicago170316711001Chicago170316712001Chicago170316713001Chicago170316713002Chicago170316714001Chicago170316714001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316715004Chicago170316715005Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316718001Chicago	170316709001	Chicago
170316711001Chicago170316712001Chicago170316713001Chicago170316713002Chicago170316714001Chicago170316714002Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316716004Chicago170316716005Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316718001Chicago	170316709002	-
170316712001Chicago170316713001Chicago170316713002Chicago170316713003Chicago170316714001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316716001Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316716004Chicago170316716005Chicago170316716005Chicago170316716005Chicago170316716005Chicago170316716005Chicago170316718001Chicago		
170316713001Chicago170316713002Chicago170316713003Chicago170316714001Chicago170316715001Chicago170316715002Chicago170316715003Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago	170316712001	-
170316713002Chicago170316713003Chicago170316714001Chicago170316714002Chicago170316715001Chicago170316715003Chicago170316716001Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316718001Chicago		-
170316713003Chicago170316714001Chicago170316714002Chicago170316715001Chicago170316715003Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316716003Chicago170316718001Chicago		-
170316714001Chicago170316714002Chicago170316715001Chicago170316715002Chicago170316716003Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316716003Chicago170316718001Chicago		-
170316714002Chicago170316715001Chicago170316715002Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316716003Chicago170316718001Chicago		•
170316715001Chicago170316715002Chicago170316715003Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316718001Chicago		-
170316715002Chicago170316715003Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316718001Chicago		-
170316715003Chicago170316716001Chicago170316716002Chicago170316716003Chicago170316718001Chicago		-
170316716001Chicago170316716002Chicago170316716003Chicago170316718001Chicago		-
170316716002Chicago170316716003Chicago170316718001Chicago		
170316716003 Chicago 170316718001 Chicago		-
170316718001 Chicago		
-		-
170316719001 Chicago		-
	1/0316719001	Chicago

170316720001	Chicago
170316720002	Chicago
170316720003	Chicago
170316720004	Chicago
170316805001	Chicago
170316806001	Chicago
170316809001	Chicago
170316809002	Chicago
170316809003	Chicago
170316809004	Chicago
170316810001	Chicago
170316810002	Chicago
170316810003	Chicago
	-
170316810004	Chicago
170316811001	Chicago
170316811002	Chicago
170316811003	Chicago
170316811004	Chicago
170316811005	Chicago
170316812001	Chicago
170316812002	Chicago
170316812003	Chicago
170316813001	Chicago
170316813002	Chicago
170316813003	Chicago
170316814001	Chicago
170316814002	Chicago
170316814003	Chicago
170316814004	Chicago
170316903001	Chicago
170316903002	Chicago
170316904001	Chicago
170316904002	Chicago
170316904003	Chicago
170316904004	Chicago
170316905001	Chicago
170316909001	-
	Chicago
170316909002	Chicago
170316909003	Chicago
170316909004	Chicago
170316909005	Chicago
170316910001	Chicago
170316910002	Chicago
170316910003	Chicago
170316910004	Chicago
170316911001	Chicago

170316911002	Chicago
170316911003	Chicago
170316911004	Chicago
170316912001	Chicago
170316912002	Chicago
170316912003	Chicago
170316913001	Chicago
170316913002	Chicago
170316914001	Chicago
170316914002	Chicago
170316914003	Chicago
170316914004	Chicago
170316914005	Chicago
170316915001	Chicago
170316915002	Chicago
170316915002	Chicago
170317001001	Chicago
170317001002	Chicago
170317002001	Chicago
170317002002	Chicago
170317002003	Chicago
170317002004	Chicago
170317003011	Chicago
170317003012	Chicago
170317003013	Chicago
170317003021	Chicago
170317003022	Chicago
170317003023	Chicago
170317003024	Chicago
170317004011	Chicago
170317004012	Chicago
170317004013	Chicago
170317004014	Chicago
170317004021	Chicago
170317004022	Chicago
170317004023	Chicago
170317005012	Chicago
170317005013	Chicago
170317005014	Chicago
170317005015	Chicago
170317005016	Chicago
170317005021	Chicago
170317005022	Chicago
170317101001	Chicago
170317102001	Chicago
170317102001	Chicago
1,021,102002	Chicago

170317102003	Chicago
170317102004	Chicago
170317102005	Chicago
170317103001	Chicago
170317104001	Chicago
170317104002	Chicago
170317104003	Chicago
170317104004	Chicago
170317104005	Chicago
170317104006	Chicago
170317105001	Chicago
170317105002	Chicago
170317105002	-
	Chicago
170317105004	Chicago
170317106001	Chicago
170317106002	Chicago
170317107001	Chicago
170317107002	Chicago
170317107003	Chicago
170317107004	Chicago
170317108001	Chicago
170317108002	Chicago
170317108003	Chicago
170317108004	Chicago
170317108005	Chicago
170317108006	Chicago
170317109001	Chicago
170317109002	Chicago
170317110001	Chicago
170317110002	Chicago
170317110003	Chicago
170317111001	Chicago
170317111001	Chicago
170317111002	Chicago
170317112001	U U
	Chicago
170317112002	Chicago
170317112003	Chicago
170317113001	Chicago
170317113002	Chicago
170317114001	Chicago
170317114002	Chicago
170317114003	Chicago
170317115001	Chicago
170317115002	Chicago
170317301001	Chicago
170317301002	Chicago

170317301003	Chicago
170317302011	Chicago
170317302012	Chicago
170317302013	Chicago
170317302014	Chicago
170317302015	Chicago
170317303001	Chicago
170317304004	Chicago
170317305001	Chicago
170317305002	Chicago
170317305003	Chicago
170317305004	Chicago
170317306001	Chicago
170317306002	Chicago
170317306003	Chicago
170317307001	-
170317307001	Chicago
	Chicago
170317401002	Chicago
170317402001	Chicago
170317501001	Chicago
170317501002	Chicago
170317501003	Chicago
170317501004	Chicago
170317505001	Chicago
170317505002	Chicago
170317505003	Chicago
170317505004	Chicago
170317506001	Chicago
170317506002	Chicago
170317506003	Chicago
170317506004	Chicago
170317608011	Chicago
170317608012	Chicago
170317608021	Chicago
170317608031	Chicago
170317608032	Chicago
170317608033	Chicago
170317608034	Chicago
170317705002	Chicago
170317706022	Chicago
170317708002	Chicago
170318305001	Chicago
170318305002	Chicago
170318305003	Chicago
170318306001	Chicago
170318306002	Chicago
110310300002	Chicago

170318306003	Chicago
170318306004	Chicago
170318307001	Chicago
170318307002	Chicago
170318307003	Chicago
170318307004	Chicago
170318311001	Chicago
170318311002	Chicago
170318311003	Chicago
170318311004	Chicago
170318312001	Chicago
170318312002	Chicago
170318312003	Chicago
170318313001	Chicago
170318314001	Chicago
170318314002	Chicago
170318314002	-
170318315001	Chicago
	Chicago
170318316001	Chicago
170318316002	Chicago
170318316003	Chicago
170318316004	Chicago
170318316005	Chicago
170318316006	Chicago
170318317001	Chicago
170318318003	Chicago
170318318004	Chicago
170318318005	Chicago
170318325001	Chicago
170318329001	Chicago
170318329002	Chicago
170318331001	Chicago
170318331004	Chicago
170318333001	Chicago
170318339001	Chicago
170318339002	Chicago
170318340001	Chicago
170318340002	Chicago
170318342001	Chicago
170318342002	Chicago
170318343002	Chicago
170318343003	Chicago
170318344001	Chicago
170318344002	Chicago
170318344002	Chicago
170318344003	Chicago
1/0516545001	CHICABO

170318346001	Chicago
170318346002	Chicago
170318347001	Chicago
170318347002	Chicago
170318347003	Chicago
170318348001	Chicago
170318348002	Chicago
170318348003	Chicago
170318349001	Chicago
170318349002	Chicago
170318350001	Chicago
170318350002	Chicago
170318350003	Chicago
170318350004	Chicago
170318350005	Chicago
170318351001	Chicago
170318351001	-
	Chicago
170318351003	Chicago
170318351004	Chicago
170318352001	Chicago
170318355001	Chicago
170318355002	Chicago
170318356001	Chicago
170318356002	Chicago
170318358001	Chicago
170318360001	Chicago
170318360002	Chicago
170318360003	Chicago
170318361001	Chicago
170318361002	Chicago
170318363001	Chicago
170318364001	Chicago
170318364002	Chicago
170318364003	Chicago
170318365001	Chicago
170318365002	Chicago
170318366001	Chicago
170318366002	Chicago
170318367001	Chicago
170318367002	Chicago
170318368001	Chicago
170318368002	Chicago
170318369001	Chicago
170318369002	Chicago
170318370001	Chicago
170318370001	Chicago
1/03103/0002	Chicago

170318371001	Chicago
170318371002	Chicago
170318373001	Chicago
170318373002	Chicago
170318374001	Chicago
170318374002	Chicago
170318378001	Chicago
170318378002	Chicago
170318380001	Chicago
170318380002	Chicago
170318381001	Chicago
170318381001	-
	Chicago
170318383001	Chicago
170318386001	Chicago
170318386002	Chicago
170318387001	Chicago
170318387002	Chicago
170318387003	Chicago
170318387004	Chicago
170318388001	Chicago
170318388002	Chicago
170318390002	Chicago
170318390003	Chicago
170318392001	Chicago
170318392002	Chicago
170318395001	Chicago
170318396002	Chicago
170318398001	-
	Chicago
170318398002	Chicago
170318398003	Chicago
170318399003	Chicago
170318400001	Chicago
170318400002	Chicago
170318401001	Chicago
170318401002	Chicago
170318402001	Chicago
170318403001	Chicago
170318403002	Chicago
170318403003	Chicago
170318404001	Chicago
170318404002	Chicago
170318407001	Chicago
170318407002	Chicago
170318407003	Chicago
170318407003	Chicago
	-
170318408002	Chicago

170318410001	Chicago
170318411001	Chicago
170318411002	Chicago
170318411003	Chicago
170318411004	Chicago
170318412001	Chicago
170318412002	Chicago
170318412003	Chicago
170318413001	Chicago
170318413002	Chicago
170318413003	Chicago
170318413004	-
	Chicago
170318415001	Chicago
170318415002	Chicago
170318417001	Chicago
170318418001	Chicago
170318418002	Chicago
170318419002	Chicago
170318420001	Chicago
170318420002	Chicago
170318421001	Chicago
170318421002	Chicago
170318421003	Chicago
170318421004	Chicago
170318421005	Chicago
170318421006	Chicago
170318423001	Chicago
170318424001	Chicago
170318424002	Chicago
170318425001	Chicago
170318426002	Chicago
170318428002	
	Chicago
170318428002	Chicago
170318428003	Chicago
170318428004	Chicago
170318428005	Chicago
170318428006	Chicago
170318429001	Chicago
170318430001	Chicago
170318430002	Chicago
170318431001	Chicago
170318431002	Chicago
170318432001	Chicago
170318432002	Chicago
170318433001	Chicago
170318434001	Chicago

	170318435001	Chicago
	170318436001	Chicago
	170318436002	Chicago
	170318437001	Chicago
	170318438001	Chicago
	170318438002	Chicago
	170318439001	Chicago
	170318439002	Chicago
	170318439003	Chicago
	170318439004	Chicago
	170318439005	Chicago
	170318446001	Chicago
	170318447001	Chicago
	170318447002	Chicago
	170318447003	Chicago
170310105011		Chicago
170310107024		Chicago
170310301012		Chicago
170310301013		Chicago
170310301014		Chicago
170310301042		Chicago
170310306011		Chicago
170310306043		Chicago
170310307032		Chicago
170310312004		Chicago
170310313002		Chicago
170310313003		Chicago
170310315011		Chicago
170310315022		Chicago
170310315023		Chicago
170310321004		Chicago
170310609004		Chicago
170310714001		Chicago
170310810004		Chicago
170310810005		Chicago
170310810005		Chicago
170310810000		Chicago
170310811002		Chicago
170310811003		•
		Chicago
170310814023		Chicago
170312503004		Chicago
170312819002		Chicago
170313009003		Chicago
170318396001	470240207044	Chicago
	170318287014	Chicago Heights
	170318288014	Chicago Heights

170318289001	Chicago Heights
170318289002	Chicago Heights
170318289003	Chicago Heights
170318290001	Chicago Heights
170318290002	Chicago Heights
170318291001	Chicago Heights
170318291002	Chicago Heights
170318292001	Chicago Heights
170318292002	Chicago Heights
170318292003	Chicago Heights
170318292004	Chicago Heights
170318293011	Chicago Heights
170318293012	Chicago Heights
170318293021	Chicago Heights
170318293022	Chicago Heights
170318293023	Chicago Heights
170318294011	Chicago Heights
170318294023	Chicago Heights
170318295002	Chicago Heights
170318297003	Chicago Heights
170318224003	Chicago Ridge
170318230011	Chicago Ridge
170318230012	Chicago Ridge
170318230013	Chicago Ridge
170318230014	Chicago Ridge
170318230015	Chicago Ridge
170318230022	Chicago Ridge
170318230023	Chicago Ridge
170318133011	Cicero
170318133012	Cicero
170318133013	Cicero
170318133013	Cicero
170318133021	Cicero
170318133022	Cicero
170318134001	Cicero
170318134002	Cicero
170318134003	
	Cicero
170318134005	Cicero
170318134006	Cicero
170318135001	Cicero
170318135002	Cicero
170318135003	Cicero
170318135004	Cicero
170318135005	Cicero
170318136001	Cicero
170318136002	Cicero

170318136003	Cicero
170318137011	Cicero
170318137012	Cicero
170318137021	Cicero
170318137022	Cicero
170318137023	Cicero
170318137024	Cicero
170318138011	Cicero
170318138012	Cicero
170318138013	Cicero
170318138021	Cicero
170318138022	Cicero
170318138023	Cicero
170318138024	Cicero
170318139001	Cicero
170318139002	Cicero
170318139003	Cicero
170318139004	Cicero
170318139005	Cicero
170318140001	Cicero
170318140002	Cicero
170318140003	Cicero
170318140004	Cicero
170318141001	Cicero
170318141002	Cicero
170318141003	Cicero
170318142001	Cicero
170318142002	Cicero
170318142003	Cicero
170318142004	Cicero
170318142005	Cicero
170318142006	Cicero
170318143001	Cicero
170318143002	Cicero
170318144001	Cicero
170318144002	Cicero
170318144003	Cicero
170318144004	Cicero
170318144005	Cicero
170318144006	Cicero
170318145001	Cicero
170318145002	Cicero
170318145002	Cicero
170318255011	Country Club Hills
170318201032	Countryside
170318201032	Countryside
110210201022	Countryside

470240204044	
170318201041	Countryside
170318202022	Countryside
170318202041	Countryside
170318236032	Crestwood
170318244001	Crestwood
170317705001	Des Plaines
170317705002	Des Plaines
170317706011	Des Plaines
170317706021	Des Plaines
170317706022	Des Plaines
170317706023	Des Plaines
170318049025	Des Plaines
170318051111	Des Plaines
170318051112	Des Plaines
170318051113	Des Plaines
170318051114	Des Plaines
170318051121	Des Plaines
170318051122	Des Plaines
170318059011	Des Plaines
170318059012	Des Plaines
170318060022	Des Plaines
170318060023	Des Plaines
170318061042	Des Plaines
170318062011	Des Plaines
170318062012	Des Plaines
170318065011	Des Plaines
170318065012	Des Plaines
170318065022	Des Plaines
170318065023	Des Plaines
170318065024	Des Plaines
170318066002	Des Plaines
170318268001	Dixmoor
170318268002	Dixmoor
170318268003	Dixmoor
170318268004	Dixmoor
170318263011	Dolton
170318263013	Dolton
170318263031	Dolton
170318263032	Dolton
170318263032	Dolton
170318263033	Dolton
170318263041	Dolton
170318263042	Dolton
170318263043	Dolton
170318264011	Dolton
170318264012	Dolton

170318264021	Dolton
170318264022	Dolton
170318264023	Dolton
170318264024	Dolton
170318264025	Dolton
170318265001	Dolton
170318265002	Dolton
170318265003	Dolton
170318265004	Dolton
170318283002	East Hazel Crest
170318044031	Elgin
170318044041	Elgin
170318044042	Elgin
170318044044	Elgin
170318044052	Elgin
170318044061	Elgin
170317703001	Elk Grove Village
170317705002	Elk Grove Village
170318046074	Elk Grove Village
170318107011	Elmwood Park
170318107012	Elmwood Park
170318107013	Elmwood Park
170318107014	Elmwood Park
170318107022	Elmwood Park
170318107023	Elmwood Park
170318108002	Elmwood Park
170318109003	Elmwood Park
170318092001	Evanston
170318092002	Evanston
170318092003	Evanston
170318092004	Evanston
170318093002	Evanston
170318093002	Evanston
170318096001	Evanston
170318096001	Evanston
170318096002	Evanston
170318090003	Evanston
170318102003	Evanston
170318103013	Evanston
170318216003	Evergreen Park
170318217005	Evergreen Park
170318218001	Evergreen Park
170318218004	Evergreen Park
170318218006	Evergreen Park
170318219001	Evergreen Park
170318299021	Flossmoor

170318285031	Ford Heights
170318297001	Ford Heights
170318297002	Ford Heights
170318297003	Ford Heights
170318161005	Forest Park
170318208001	Forest View
170318208003	Forest View
170318112005	Franklin Park
170318113022	Franklin Park
170318114011	Franklin Park
170318114014	Franklin Park
170318115001	Franklin Park
170318115002	Franklin Park
170318115003	Franklin Park
170318115004	Franklin Park
170318117011	Franklin Park
170318117012	Franklin Park
170318117023	Franklin Park
	Franklin Park
170318016031	Glenview
170318016032	Glenview
170318019012	Glenview
170318020041	Glenview
170318020042	Glenview
170318020043	Glenview
170318020044	Glenview
170318060011	Glenview
170318283002	Glenwood
170318287014	Glenwood
170318045093	Hanover Park
170318045101	Hanover Park
170318045102	Hanover Park
170318045103	Hanover Park
170318045104	Hanover Park
170318045111	Hanover Park
170318045112	Hanover Park
170318048063	Hanover Park
170318248003	Harvey
170318248003	Harvey
170318269011	
170318269011	Harvey Harvey
170318269021	
170318269022	Harvey
170318270001	Harvey
170318270002	Harvey
	Harvey
170318271001	Harvey

170318113021

Cook County Cook County Cook County **Cook County** Cook County Cook County **Cook County** Cook County **Cook County** Cook County Cook County **Cook County** Cook County Cook County **Cook County** Cook County **Cook County** Cook County Cook County **Cook County** Cook County Cook County **Cook County** Cook County **Cook County** Cook County Cook County **Cook County Cook County** Cook County Cook County Cook County Cook County Cook County **Cook County Cook County Cook County** Cook County **Cook County** Cook County Cook County Cook County **Cook County Cook County Cook County**

Cook County

170318271002	Harvey
170318271003	Harvey
170318272001	Harvey
170318272004	Harvey
170318273001	Harvey
170318273002	Harvey
170318273003	Harvey
170318274001	Harvey
170318274002	Harvey
170318274003	Harvey
170318274004	Harvey
170318275001	Harvey
170318275002	Harvey
170318275003	Harvey
170318283002	Harvey
170317709011	Harwood Heights
170317709013	Harwood Heights
170317709014	Harwood Heights
170318105021	Harwood Heights
170318105022	Harwood Heights
170318106001	Harwood Heights
170318106002	Harwood Heights
170318106003	Harwood Heights
170318255033	Hazel Crest
170318277001	Hazel Crest
170318277002	Hazel Crest
170318299021	Hazel Crest
170318206051	Hickory Hills
170318206052	Hickory Hills
170318206062	Hickory Hills
170318237021	Hickory Hills
170318237024	Hickory Hills
170318237032	Hickory Hills
170318237033	Hickory Hills
170318237041	Hickory Hills
170318237042	Hickory Hills
170318237043	Hickory Hills
170318237051	Hickory Hills
170318237051	Hickory Hills
170318237052	Hickory Hills
170318237053	Hickory Hills
170318183002	Hillside
170318183002	Hillside
170318184012	Hinsdale
170318202021	Hodgkins
170318202021	Hodgkins
110310202022	nougnins

170318046031	Hoffman Estates
170318047111	Hoffman Estates
170318047151	Hoffman Estates
170318047152	Hoffman Estates
170318220001	Hometown
170318220002	Hometown
170318220003	Hometown
170318220004	Hometown
170318220005	Hometown
170318255033	Homewood
170318283002	Homewood
170318284023	Homewood
170318299021	Homewood
170318201017	Indian Head Park
170318202041	Indian Head Park
170318202021	Justice
170318205015	Justice
170318206031	Justice
170318206032	Justice
170318206033	Justice
170318206041	Justice
170318206042	Justice
170318206051	Justice
170318206052	Justice
170318206053	Justice
170318206062	Justice
170318195004	La Grange
170318201033	La Grange
170318279011	Lansing
170318279012	Lansing
170318279021	Lansing
170318279022	Lansing
170318279023	Lansing
170318279024	Lansing
170318281003	Lansing
170318281004	Lansing
170318080012	Lincolnwood
170318285031	Lynwood
170318191001	Lyons
170318191002	Lyons
170318191003	, Lyons
170318191004	Lyons
170318192001	Lyons
170318192003	, Lyons
170318192004	, Lyons
170318202021	Lyons

170318248004	Markham
170318249001	Markham
170318249002	Markham
170318256001	Markham
170318256002	Markham
170318256003	Markham
170318256004	Markham
170318274002	Markham
170318274003	Markham
170318276001	Markham
170318276002	Markham
170318276003	Markham
170318300011	Matteson
170318300071	Matteson
170318302012	Matteson
_/	Matteson
170318172001	Maywood
170318172002	Maywood
170318172003	Maywood
170318172004	Maywood
170318173001	Maywood
170318174001	Maywood
170318174002	Maywood
170318174003	Maywood
170318175001	Maywood
170318175002	Maywood
170318175002	Maywood
170318175004	Maywood
170318176001	Maywood
170318176002	Maywood
170318176002	Maywood
170318177001	Maywood
170318202021	McCook
170318113022	Melrose Park
170318162001	Melrose Park
170318163001	Melrose Park
170318163002	Melrose Park
170318163002	Melrose Park
170318163004	Melrose Park
170318163004	Melrose Park
170318164012	Melrose Park
170318164012	Melrose Park
170318164014	Melrose Park
170318164014	Melrose Park
170318164021	Melrose Park
170318164022	Melrose Park
1/0310104023	WEILUSE FAIK

142

170318300012

			Chicago WISA FCAF SJ 1/2024
	170318164024	Melrose Park	Cook County
	170318165001	Melrose Park	Cook County
	170318165002	Melrose Park	Cook County
	170318165003	Melrose Park	Cook County
170318113021		Melrose Park	Cook County
	170318233043	Merrionette Park	Cook County
	170318246025	Midlothian	Cook County
	170318247022	Midlothian	Cook County
	170318053011	Morton Grove	Cook County
	170318053012	Morton Grove	Cook County
	170318083014	Morton Grove	Cook County
	170318050021	Mount Prospect	Cook County
	170318050022	Mount Prospect	Cook County
	170318050023	Mount Prospect	Cook County
	170318050024	Mount Prospect	Cook County
	170318050025	Mount Prospect	Cook County
	170318051073	Mount Prospect	Cook County
	170318051074	Mount Prospect	Cook County
	170318051081	Mount Prospect	Cook County
	170318051082	Mount Prospect	, Cook County
	170318051083	Mount Prospect	, Cook County
	170318051114	Mount Prospect	, Cook County
	170318051115	Mount Prospect	, Cook County
	170318051116	Mount Prospect	, Cook County
	170318051121	Mount Prospect	, Cook County
	170318053011	Niles	Cook County
	170318053013	Niles	Cook County
	170318054011	Niles	Cook County
	170318054012	Niles	Cook County
	170318054013	Niles	Cook County
	170318059022	Niles	Cook County
	170318059024	Niles	Cook County
	170318060012	Niles	Cook County
	170318060013	Niles	Cook County
	170318060041	Niles	Cook County
	170318060042	Niles	Cook County
	170318060043	Niles	Cook County
	170318060044	Niles	Cook County
	170318060061	Niles	Cook County
	170318080001	Niles	Cook County Cook County
	170318081001	Niles	Cook County Cook County
170318060064	1/0310001002	Niles	Cook County
170318060004		None	Cook County
170318060014		None	Cook County
170318060021		None	Cook County
170318060024		None	Cook County
11031000002		NONE	COOK County

Chicago MSA PCAP 3/1/2024

	None
	None
	None
	None
170317709011	Norridge
170317709012	Norridge
170317709021	Norridge
170317709022	Norridge
170318105022	Norridge
170318105023	Norridge
170318105024	Norridge
170318105025	Norridge
170318156001	North Riverside
170318156003	North Riverside
170318179002	North Riverside
170318024022	Northbrook
170318113012	Northlake
170318113013	Northlake
170318117011	Northlake
170318117021	Northlake
170318117022	Northlake
170318117023	Northlake
170318118002	Northlake
170318118004	Northlake
170318167001	Northlake
170318167002	Northlake
170318245054	Oak Forest
170318246025	Oak Forest
170318252001	Oak Forest
170318255011	Oak Forest
170318256004	Oak Forest
170318221011	Oak Lawn
170318221012	Oak Lawn
170318221013	Oak Lawn
170318221021	Oak Lawn
170318221022	Oak Lawn
170318221024	Oak Lawn
170318222001	Oak Lawn
170318223011	Oak Lawn
170318223012	Oak Lawn
170318223013	Oak Lawn
170318223014	Oak Lawn
170318223021	Oak Lawn
170318223022	Oak Lawn
170318223024	Oak Lawn
170318224001	Oak Lawn

170318060063 170318061041 170318061043 170318208002

Cook County Cook County Cook County **Cook County** Cook County Cook County **Cook County** Cook County **Cook County** Cook County Cook County **Cook County** Cook County Cook County Cook County Cook County **Cook County** Cook County Cook County **Cook County** Cook County Cook County Cook County **Cook County** Cook County Cook County Cook County **Cook County Cook County** Cook County Cook County Cook County Cook County Cook County **Cook County Cook County Cook County** Cook County **Cook County** Cook County **Cook County** Cook County **Cook County Cook County Cook County**

Cook County

170318224002	Oak Lawn
170318224003	Oak Lawn
170318224004	Oak Lawn
170318225002	Oak Lawn
170318225003	Oak Lawn
170318225004	Oak Lawn
170318226012	Oak Lawn
170318226013	Oak Lawn
170318226021	Oak Lawn
170318226023	Oak Lawn
170318226024	Oak Lawn
170318227011	Oak Lawn
170318227012	Oak Lawn
170318227013	Oak Lawn
170318227014	Oak Lawn
170318227021	Oak Lawn
170318227022	Oak Lawn
170318228022	Oak Lawn
170318228023	Oak Lawn
170318293011	Olympia Fields
170318293012	Olympia Fields
170318241163	Orland Park
170318030173	Palatine
170318036044	Palatine
170318036055	Palatine
170318036111	Palatine
170318036112	Palatine
170318036131	Palatine
170318036132	Palatine
170318036141	Palatine
170318036142	Palatine
170318046031	Palatine
	Palatine
170318237021	Palos Hills
170318237023	Palos Hills
170318237024	Palos Hills
170318237032	Palos Hills
170318238031	Palos Hills
170318238032	Palos Hills
170318238033	Palos Hills
170318238034	Palos Hills
170318238051	Palos Hills
170318238052	
170318238064	
170318294021	Park Forest
170318294022	Park Forest
·····	

170318036121

170318294	023	Park Forest
170318303	001	Park Forest
170318303	002	Park Forest
170318303	003	Park Forest
170318303	004	Park Forest
170318304	001	Park Forest
170318304	004	Park Forest
170318055	012	Park Ridge
170318059	011	Park Ridge
170318059	012	Park Ridge
170318059	022	Park Ridge
170318059	024	Park Ridge
170318060	025	Park Ridge
170318060	042	Park Ridge
170318060	051	Park Ridge
170318060	052	Park Ridge
170318272	2001	Phoenix
170318272	002	Phoenix
170318272	003	Phoenix
170318272	004	Phoenix
170318248	8001	Posen
170318248	8002	Posen
170318248	8003	Posen
170318248	8004	Posen
170318268	8001	Posen
170318268	8002	Posen
170318016	6031	Prospect Heights
170318016	6032	Prospect Heights
170318025	053	Prospect Heights
170318025		Prospect Heights
170318026	091	Prospect Heights
170318026	092	Prospect Heights
170318026	6093	Prospect Heights
170318026		Prospect Heights
170318030	141	Prospect Heights
170318030		Prospect Heights
170318300	071	Richton Park
170318300		Richton Park
170318300	073	Richton Park
170318302		Richton Park
170318302	012	Richton Park
		Richton Park
170318111		River Grove
170318111		River Grove
170318111		River Grove
170318111	.004	River Grove

170318300012

170318215001	Riverdale
170318266001	Riverdale
170318266002	Riverdale
170318266003	Riverdale
170318266004	Riverdale
170318266005	Riverdale
170318267001	Riverdale
170318267002	Riverdale
170318267003	Riverdale
170318267004	Riverdale
170318268004	Riverdale
170318191004	Riverside
170318236031	Robbins
170318236032	Robbins
170318243001	Robbins
170318243002	Robbins
170318243003	Robbins
170318244001	Robbins
170317703001	Rolling Meadows
170318046031	Rolling Meadows
170318051051	Rolling Meadows
170318051052	Rolling Meadows
170318051053	Rolling Meadows
170318051054	Rolling Meadows
170318051055	Rolling Meadows
170318051072	Rolling Meadows
170318046074	Roselle
170317706022	Rosemont
170317707001	Rosemont
170318285031	Sauk Village
170318285032	Sauk Village
170318285033	Sauk Village
170318285034	Sauk Village
170318285041	Sauk Village
170318285042	Sauk Village
170318285043	Sauk Village
170318285044	Sauk Village
170318297003	Sauk Village
170318043081	Schaumburg
170318046031	Schaumburg
170318047111	Schaumburg
170318047152	Schaumburg
170318048104	Schaumburg
170318051053	Schaumburg
170317708001	Schiller Park
170317708002	Schiller Park

170318116001	Schiller Park
170318116002	Schiller Park
170318116003	Schiller Park
170318116004	Schiller Park
170318069001	Skokie
170318070001	Skokie
170318070002	Skokie
170318070004	Skokie
170318073001	Skokie
170318073002	Skokie
170318073003	Skokie
170318073004	Skokie
170318073005	Skokie
170318074001	Skokie
170318074002	Skokie
170318074003	Skokie
170318074004	Skokie
170318074005	Skokie
170318076001	Skokie
170318076002	Skokie
170318076003	Skokie
170318076004	Skokie
170318076005	Skokie
170318077001	Skokie
170318077002	Skokie
170318077003	Skokie
170318077004	Skokie
170318295001	South Chicago Heights
170318295002	South Chicago Heights
170318297003	South Chicago Heights
170318263012	South Holland
170318263013	South Holland
170318263031	South Holland
170318263032	South Holland
170318263034	South Holland
170318272001	South Holland
170318272003	South Holland
170318272004	South Holland
170318275001	South Holland
170318275002	South Holland
170318278011	South Holland
170318278051	South Holland
170318279011	South Holland
170318279012	South Holland
170318283002	South Holland
170318296001	Steger
	0

170318297003	Steger
170318207001	Stickney
170318207002	Stickney
170318207003	Stickney
170318207004	Stickney
170318165001	Stone Park
170318166001	Stone Park
170318166002	Stone Park
170318166003	Stone Park
170318043051	Streamwood
170318043053	Streamwood
170318043081	Streamwood
170318045081	Streamwood
170318045092	Streamwood
170318045093	Streamwood
170318202021	Summit
170318203001	Summit
170318203002	Summit
170318203003	Summit
170318203004	Summit
170318204001	Summit
170318204002	Summit
170318204003	Summit
170318205011	Summit
170318283002	Thornton
170318253031	Tinley Park
170318300072	University Park
170318024021	Wheeling
170318024022	Wheeling
170318024023	Wheeling
170318024024	Wheeling
170318024041	Wheeling
170318024042	Wheeling
170318024043	Wheeling
170318024044	Wheeling
170318025042	Wheeling
170318025051	Wheeling
170318025052	Wheeling
170318025053	Wheeling
170318025054	Wheeling
170318025055	Wheeling
170318025061	Wheeling
170318025062	Wheeling
170318030141	Wheeling
170318030142	Wheeling
170318202021	Willow Springs

170318202022	Willow Springs
170318202023	Willow Springs
170318206031	Willow Springs
170318206062	Willow Springs
170318231011	Worth
170318231012	Worth
170318231013	Worth
170318231014	Worth
170318231015	Worth
170318231021	Worth
170318238064	Worth
170370015003	Cortland
170370009001	DeKalb
170370010021	DeKalb
170370010022	DeKalb
170370010023	DeKalb
170370010031	DeKalb
170370010032	DeKalb
170370013003	DeKalb
170370014002	DeKalb
170370014003	DeKalb
170370015001	DeKalb
170370015002	DeKalb
170370015003	DeKalb
170370022001	DeKalb
170370021001	Sandwich
170370021002	Sandwich
170438401041	Addison
170438401042	Addison
170438401043	Addison
170438401044	Addison
170438401045	Addison
170438403031	Addison
170438403032	Addison
170438409043	Addison
170438409061	Addison
170438409071	Addison
170438466031	Addison
170438466032	Addison
170438466033	Addison
170438467011	Addison
170438467012	Addison
170438467013	Addison
170438416052	Batavia
170438400001	Bensenville
170438400002	Bensenville

Cook County Cook County Cook County Cook County **Cook County** Cook County Cook County **Cook County** Cook County **Cook County** Cook County **DeKalb County DeKalb** County **DeKalb County DeKalb County DuPage County**

170438401013	Bensenville
170438401014	Bensenville
170438407031	Bensenville
170438407032	Bensenville
170438407041	Bensenville
170438407042	Bensenville
170438408011	Bensenville
170438408012	Bensenville
170438408021	Bensenville
170438408022	Bensenville
170438408023	Bensenville
170438408024	Bensenville
170438408025	Bensenville
170438409043	Bloomingdale
170438409071	Bloomingdale
170438411132	Bloomingdale
170438459022	Burr Ridge
170438412064	Carol Stream
170438417071	Carol Stream
170438417072	Carol Stream
170438417081	Carol Stream
170438417082	Carol Stream
170438417083	Carol Stream
170438400002	Chicago
170438408012	Chicago
170438455024	Clarendon Hills
170438455052	Darien
170438455081	Darien
170438458023	Darien
170438458031	Darien
170438458071	Darien
170438458101	Darien
170438458103	Darien
170438455061	Downers Grove
170438457041	Downers Grove
170438457042	Downers Grove
170438400002	Elk Grove Village
170438401014	Elk Grove Village
170438417061	Glen Ellyn
170438417062	, Glen Ellyn
170438417081	, Glen Ellyn
170438409041	, Glendale Heights
170438409042	Glendale Heights
170438409043	Glendale Heights
170438409083	Glendale Heights
170438409101	Glendale Heights

DuPage County DuPage County DuPage County **DuPage County DuPage County**

170438409102	Glendale Heights
170438409103	Glendale Heights
170438409104	Glendale Heights
170438411132	Glendale Heights
170438412042	Glendale Heights
170438412072	Glendale Heights
170438412082	Glendale Heights
170438417053	Glendale Heights
170438417054	Glendale Heights
170438417071	Glendale Heights
170438411022	Hanover Park
170438411081	Hanover Park
170438401014	Itasca
170438458031	Lemont
170438463121	Lisle
170438417061	Lombard
170438433013	Lombard
170438436012	Lombard
	None
	None
170438411022	Roselle
170438431001	Villa Park
170438433013	Villa Park
170438416032	Warrenville
170438416033	Warrenville
170438416042	Warrenville
170438416051	Warrenville
170438416053	Warrenville
170438413121	West Chicago
170438414011	West Chicago
170438414014	West Chicago
170438415011	West Chicago
170438415012	West Chicago
170438415013	West Chicago
170438415031	West Chicago
170438415032	West Chicago
170438415041	West Chicago
170438415041	West Chicago
170438415042	•
170438416031	West Chicago
170438416032	West Chicago
	West Chicago
170438416052	West Chicago
170438447013	Westmont
170438447024	Westmont
170438450003	Westmont
170438450004	Westmont

DuPage County DuPage County DuPage County **DuPage County DuPage County**

170438458032 170438458033

152

Chicago MSA PCAP 3/1/2024

170438455052	Westmont
170438455061	Westmont
170438455062	Westmont
170438455081	Westmont
170438455102	Westmont
170438416033	Wheaton
170438424003	Wheaton
170438455024	Willowbrook
170438455081	Willowbrook
170438458103	Willowbrook
170438414011	Winfield
170438416033	Winfield
170438401011	Wood Dale
170438401012	Wood Dale
170438401013	Wood Dale
170438401014	Wood Dale
170438401041	Wood Dale
170438458031	Woodridge
170438458093	Woodridge
170438463101	Woodridge
170438463112	Woodridge
170630003003	Morris
170898529032	Aurora
170898529041	Aurora
170898529042	Aurora
170898529051	Aurora
170898529052	Aurora
170898529053	Aurora
170898529071	Aurora
170898529072	Aurora
170898529073	Aurora
170898529074	
170898530052	Aurora
170898530062	
170898530072	
170898530072	Aurora
170898530082	
170898530082	Aurora
170898530083	Aurora
170898531001	
170898531002	Aurora
170898532001	Aurora
170898532002	
	Aurora
170898533001	
170898533002	Aurora
170898533003	Aurora

DuPage County DuPage County Grundy County Kane County Kane County

170898534011	Aurora
170898534012	Aurora
170898534021	Aurora
170898534022	Aurora
170898534023	Aurora
170898534024	Aurora
170898535001	Aurora
170898535002	Aurora
170898535003	Aurora
170898535004	Aurora
170898536011	Aurora
170898536012	Aurora
170898536021	Aurora
170898536022	Aurora
170898541001	Aurora
170898541002	Aurora
170898541003	Aurora
170898541004	Aurora
170898542001	Aurora
170898542002	Aurora
170898542003	Aurora
170898542004	Aurora
170898543011	Aurora
170898543012	Aurora
170898543013	Aurora
170898543014	Aurora
170898543015	Aurora
170898543021	Aurora
170898543022	Aurora
170898544012	Aurora
170898544031	Aurora
170898544032	Aurora
170898544033	Aurora
170898547001	Aurora
170898547002	Aurora
170898527004	Batavia
170898528032	Batavia
170898528053	Batavia
170898528061	Batavia
170898501011	Carpentersville
170898502012	Carpentersville
170898502021	Carpentersville
170898502022	Carpentersville
170898502023	Carpentersville
170898503011	Carpentersville
170898503012	Carpentersville

Kane County Kane County

170898503013	Carpentersville
170898503014	Carpentersville
170898503021	Carpentersville
170898502022	East Dundee
170898502023	East Dundee
170898508001	Elgin
170898508003	Elgin
170898508004	Elgin
170898511013	Elgin
170898511014	Elgin
170898511021	Elgin
170898513011	Elgin
170898513012	Elgin
170898513013	Elgin
170898513021	Elgin
170898513022	Elgin
170898514001	Elgin
170898514002	Elgin
170898514003	Elgin
170898514004	Elgin
170898514005	Elgin
170898514006	Elgin
170898515001	Elgin
170898516001	Elgin
170898516002	Elgin
170898516003	Elgin
170898516004	Elgin
170898516005	Elgin
170898519042	Elgin
170898519082	Elgin
170898546001	Elgin
170898546002	Elgin
170898546003	Elgin
170898549002	Elgin
170898544012	Montgomery
170898545083	Montgomery
170898528052	North Aurora
170898528053	North Aurora
170898529053	North Aurora
170898530081	North Aurora
170898549002	South Elgin
170938901042	Aurora
170938907011	Joliet
170938901042	Montgomery
170938905022	Plano
170978604001	Beach Park

Kane County **Kendall County Kendall County Kendall County Kendall County** Lake County

Chicago MSA PCAP 3/1/2024

170978606001	Beach Park
170978606002	Beach Park
170978606003	Beach Park
170978606004	Beach Park
170978615072	Beach Park
170978619011	Beach Park
170978608081	Channel Lake
170978610123	Fox Lake Hills
170978615041	Gurnee
170978615042	Gurnee
170978615062	Gurnee
170978615071	Gurnee
170978615072	Gurnee
170978615082	Gurnee
170978615092	Gurnee
170978615101	Gurnee
170978615103	Gurnee
170978619022	Gurnee
170978614022	Hainesville
170978614044	Hainesville
170978652004	Highland Park
170978655011	Highland Park
170978652001	Highwood
170978652002	Highwood
170978652003	Highwood
170978652004	Highwood
170978655011	Highwood
170978645113	Indian Creek
170978645114	Indian Creek
170978642041	Island Lake
170978610123	Lake Villa
170978645111	Long Grove
170978609061	Long Lake
170978613031	Long Lake
170978640021	Mundelein
170978640022	Mundelein
170978640023	Mundelein
170978640024	Mundelein
170978645111	Mundelein
170978645112	Mundelein
170978628001	North Chicago
170978629011	North Chicago
170978629011	North Chicago
170978629012	North Chicago
170978629013	-
	North Chicago
170978629022	North Chicago

170978630031	North Chicago
170978630041	North Chicago
170978630042	North Chicago
170978630043	North Chicago
170978630044	North Chicago
170978631001	North Chicago
170978631002	North Chicago
170978632011	North Chicago
170978632012	North Chicago
170978632013	North Chicago
170978615041	Park City
170978615042	Park City
170978615043	Park City
170978615101	, Park City
170978615103	, Park City
170978626042	, Park City
170978626053	, Park City
170978609061	, Round Lake
170978614022	Round Lake
170978614031	Round Lake
170978614032	Round Lake
170978614041	Round Lake
170978612011	Round Lake Beach
170978613031	Round Lake Beach
170978613032	Round Lake Beach
170978613033	Round Lake Beach
170978613041	Round Lake Beach
170978614031	Round Lake Beach
170978614022	Round Lake Park
170978614032	Round Lake Park
170978614041	Round Lake Park
170978614042	Round Lake Park
170978614043	Round Lake Park
170978614044	Round Lake Park
170978640022	Vernon Hills
170978645112	Vernon Hills
170978645113	Vernon Hills
170978645114	Vernon Hills
170978615062	Wadsworth
170978642041	Wauconda
170978604001	Waukegan
170978606002	Waukegan
170978615043	Waukegan
170978615062	Waukegan
170978615071	Waukegan
170978615072	Waukegan

170978617023	Waukegan
170978618032	Waukegan
170978618034	Waukegan
170978618041	Waukegan
170978618042	Waukegan
170978619011	Waukegan
170978619013	Waukegan
170978619021	Waukegan
170978619022	Waukegan
170978619023	Waukegan
170978619024	Waukegan
170978620001	Waukegan
170978620002	Waukegan
170978620003	Waukegan
170978620004	Waukegan
170978621001	Waukegan
170978621002	Waukegan
170978621002	Waukegan
170978621004	Waukegan
170978622002	Waukegan
170978623001	-
	Waukegan
170978623002	Waukegan
170978623003	Waukegan
170978624011	Waukegan
170978624012	Waukegan
170978624021	Waukegan
170978624022	Waukegan
170978624023	Waukegan
170978625011	Waukegan
170978625012	Waukegan
170978625021	Waukegan
170978626031	Waukegan
170978626032	Waukegan
170978626033	Waukegan
170978626034	Waukegan
170978626035	Waukegan
170978626041	Waukegan
170978626042	Waukegan
170978626043	Waukegan
170978626051	Waukegan
170978626052	Waukegan
170978626053	Waukegan
170978627001	Waukegan
170978627002	Waukegan
170978627003	Waukegan
170978627003	Waukegan
1,00,002,004	waukegail

170978628001	Waukegan
170978632013	Waukegan
170978661001	Waukegan
170978661002	Waukegan
170978602001	Zion
170978602002	Zion
170978603011	Zion
170978603012	Zion
170978603013	Zion
170978603021	Zion
170978603022	Zion
170978603023	Zion
170978604001	Zion
170978605001	Zion
170978605002	Zion
170978605003	Zion
170978605004	Zion
170978605005	Zion
170978606001	Zion
170978606002	Zion
170978606003	Zion
171118703011	Big Foot Prairie
171118703022	Big Foot Prairie
171118703012	Chemung
171118703011	Harvard
171118703012	Harvard
171118703013	Harvard
171118703021	Harvard
171118703022	Harvard
171118703023	Harvard
171118703011	Lawrence
171118703012	Lawrence
171118710032	Marengo
171118706054	McHenry
171118704022	Woodstock
171118709051	Woodstock
171978801052	Bolingbrook
171978801112	Bolingbrook
171978801131	Bolingbrook
171978801133	Bolingbrook
171978801141	Bolingbrook
171978801142	Bolingbrook
171978801173	Bolingbrook
171978802022	Bolingbrook
171978807022	Crest Hill
171978809052	Crest Hill

Lake County **McHenry County McHenry County** McHenry County **McHenry County McHenry County** McHenry County Will County

171978838091	Crete
171978838092	Crete
171978838103	Crete
171978807021	Fairmont
171978807022	Fairmont
171978807023	Fairmont
171978838091	Goodenow
171978823001	Ingalls Park
171978823002	Ingalls Park
171978823003	Ingalls Park
171978812011	Joliet
171978812012	Joliet
171978812021	Joliet
171978813011	Joliet
171978813012	Joliet
171978813021	Joliet
171978814011	Joliet
171978814012	Joliet
171978814013	Joliet
171978814021	Joliet
171978815001	Joliet
171978816032	Joliet
171978818001	Joliet
171978818002	Joliet
171978818003	Joliet
171978819001	Joliet
171978819002	Joliet
171978819003	Joliet
171978819004	Joliet
171978820001	
171978820002	Joliet
171978821001	Joliet
171978821002	Joliet
171978822001	Joliet
171978822002	Joliet
171978823003	Joliet
171978824001	Joliet
171978824002	Joliet
171978825001	Joliet
171978825002	Joliet
171978826012	Joliet
171978826013	Joliet
171978826021	
171978826022	
171978827023	Joliet
171978828011	Joliet

Will County Will County

171978828012	Joliet
171978828021	Joliet
171978828022	Joliet
171978828023	Joliet
171978829001	Joliet
171978829002	Joliet
171978830001	Joliet
171978830002	Joliet
171978830003	Joliet
171978831001	Joliet
171978831002	Joliet
171978831003	Joliet
171978807021	Lockport
171978807022	Lockport
171978807023	Lockport
171978803072	Naperville
171978823002	New Lenox
171978831001	Preston Heights
171978831002	Preston Heights
171978831003	Preston Heights
171978812021	Ridgewood
171978822001	Ridgewood
171978822002	Ridgewood
171978829001	Rockdale
171978829002	Rockdale
171978802022	Romeoville
171978802031	Romeoville
171978804261	Romeoville
171978805091	Romeoville
171978805092	Romeoville
171978837001	Steger
171978837002	Steger
171978837002	Steger
171978838031	Steger
171978836051	University Park
171978836051	University Park
171978838092	University Park
	Rensselaer
180731011001	
180731011002	Rensselaer
180731011003	Rensselaer
180731011004	Rensselaer
180890208003	East Chicago
180890301001	East Chicago
180890302001	East Chicago
180890302002	East Chicago
180890303001	East Chicago

Will County Jasper County Jasper County Jasper County Jasper County Lake County Lake County Lake County Lake County Lake County

180890303002	East Chicago
180890304001	East Chicago
180890304002	East Chicago
180890304003	East Chicago
180890305001	East Chicago
180890305002	East Chicago
180890305003	East Chicago
180890305004	East Chicago
180890306001	East Chicago
180890306002	East Chicago
180890306003	East Chicago
180890306004	East Chicago
180890307001	East Chicago
180890307002	East Chicago
180890308001	East Chicago
180890308002	East Chicago
180890308003	East Chicago
180890308004	East Chicago
180890309001	East Chicago
180890309002	East Chicago
180890309003	East Chicago
180890310001	East Chicago
180890310002	East Chicago
180890101004	Gary
180890102031	Gary
180890102032	Gary
180890102033	Gary
180890102051	Gary
180890102052	Gary
180890102061	Gary
180890102062	Gary
180890102071	Gary
180890102072	Gary
180890103021	Gary
180890103022	Gary
180890103023	Gary
180890103041	Gary
180890103042	Gary
180890103043	Gary
180890103044	Gary
180890104001	Gary
180890104002	Gary
180890104002	Gary
180890104003	Gary
180890104004	Gary Gary
180890105001	Gary
10002010001	Jary

La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
		Cou	
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
La	ke	Cou	nty
		Cou	
La	ke	Cou	nty
La	ke	Cou	nty
		Cou	-
		Cou	-
		Cou	
		Cou	-

180890106002	Gary
180890109001	Gary
180890109002	Gary
180890110001	Gary
180890110002	Gary
180890111001	, Gary
180890111002	Gary
180890111003	Gary
180890111004	Gary
180890112001	Gary
180890112001	-
	Gary
180890112003	Gary
180890112004	Gary
180890112005	Gary
180890113001	Gary
180890113002	Gary
180890114001	Gary
180890114002	Gary
180890115001	Gary
180890115002	Gary
180890115003	Gary
180890116001	Gary
180890116002	Gary
180890116003	Gary
180890117001	Gary
180890117002	Gary
180890118001	Gary
180890118002	Gary
180890119001	Gary
180890119002	Gary
180890120001	Gary
180890120002	, Gary
180890121001	Gary
180890122001	, Gary
180890122002	Gary
180890123001	Gary
180890123002	Gary
180890123003	Gary
180890123004	Gary
180890124001	Gary
180890124002	Gary
180890124002	•
180890124003	Gary
	Gary
180890124005	Gary
180890124006	Gary
180890125001	Gary

3/1/20	124	
	Lake	County
	Lake	County
		County
	Lake	County
		, County
		County
		-
		County
	Lake	County
		County
	Lake	County

180890125002	Gary
180890125003	Gary
180890125004	Gary
180890126001	Gary
180890126002	Gary
180890126003	Gary
180890127001	Gary
180890127002	Gary
180890127003	Gary
180890127004	Gary
180890128001	Gary
180890128002	Gary
180890128003	Gary
180890411001	Gary
180890411002	Gary
180890411003	Gary
180890412001	Gary
180890412002	Gary
180890412003	Gary
180890415001	Gary
180890201001	Hammond
180890201003	Hammond
180890203001	Hammond
180890203002	Hammond
180890203003	Hammond
180890203004	Hammond
180890203005	Hammond
180890204001	Hammond
180890204002	Hammond
180890204003	Hammond
180890204004	Hammond
180890205001	Hammond
180890205002	Hammond
180890205003	Hammond
180890205004	Hammond
180890206001	Hammond
180890206002	Hammond
180890207001	Hammond
180890207002	Hammond
180890207003	Hammond
180890207004	Hammond
180890207005	Hammond
180890208001	Hammond
180890208002	Hammond
180890208003	Hammond
180890208004	Hammond

٩P	5/1/20)24	
		Lake	County
			, County
			County
			County
		гаке	County

180890210001	Hammond
180890210002	Hammond
180890210003	Hammond
180890210004	Hammond
180890210005	Hammond
180890211001	Hammond
180890211002	Hammond
180890211003	Hammond
180890211004	Hammond
180890213003	Hammond
180890214001	Hammond
180890214002	Hammond
180890214003	Hammond
180890214004	Hammond
180890215001	Hammond
180890216001	Hammond
180890217001	Hammond
180890217002	Hammond
180890217003	Hammond
180890217004	Hammond
180890217005	Hammond
180890218001	Hammond
180890218002	Hammond
180890218003	Hammond
180890218004	Hammond
180890219001	Hammond
180890219002	Hammond
180890219003	Hammond
180890219004	Hammond
180890220001	Hammond
180890220002	Hammond
180890220003	Hammond
180890220004	Hammond
180890211004	Highland
180890406002	Highland
180890418007	Hobart
180890421001	Hobart
180890421002	Hobart
180890421003	Hobart
180890421004	Hobart
180890421005	Hobart
180890422002	Hobart
180890416001	Lake Station
180890416003	Lake Station
180890416004	Lake Station
180890417001	Lake Station
10000041/001	

Lake County
Lake County
-
Lake County
Newton County
Newton County
Newton County
Newton County
Newton County
Newton County
Newton County
Newton County
Newton County
Newton County
Newton County
Newton County
Newton County
Newton County
Newton County
Newton County
Porter County
-

180890417002	Lake Station
180890417003	Lake Station
180890417004	Lake Station
180890417005	Lake Station
180890418001	Lake Station
180890418002	Lake Station
180890418003	Lake Station
180890418004	Lake Station
180890418006	Lake Station
180890418007	Lake Station
180890424013	Merrillville
180890424031	Merrillville
180890424032	Merrillville
180890424033	Merrillville
180890424052	Merrillville
180890425081	Merrillville
180890416001	New Chicago
180890416002	New Chicago
180890416003	New Chicago
180890421002	New Chicago
	None
	None
	None
	None
180890401001	Whiting
180890401002	Whiting
180890402001	Whiting
180890402002	Whiting
180890402003	Whiting
181111006001	Brook
181111006002	Brook
181111006002	Goodland
181111006003	Goodland
181111007001	Kentland
181111007002	Kentland
181111007003	Kentland
181111004003	Lake Village
181111004004	Lake Village
181111005002	Morocco
181111005003	Morocco
181111005002	Mount Ayr
181111004001	Roselawn
181111005001	Roselawn
181111004003	Sumava Resorts
181111004002	Thayer
181270502022	Chesterton

Chicago MSA PCAP 3/1/2024

	None
181270504072	Portage
181270504082	Portage
181270504091	Portage
181270504093	Portage
181270505011	Portage
181270505011	Portage
181270505081	Portage
181270505081	-
181270505085	Portage
	Portage
181270505031	South Haven
181270505032	South Haven
181270505033	South Haven
181270507052	Valparaiso
181270509012	Valparaiso
550590027003	Bristol
550590001011	Kenosha
550590001021	Kenosha
550590003001	Kenosha
550590003002	Kenosha
550590003003	Kenosha
550590004004	Kenosha
550590005013	Kenosha
550590005023	Kenosha
550590006042	Kenosha
550590007001	Kenosha
550590007003	Kenosha
550590007004	Kenosha
550590007005	Kenosha
550590008001	Kenosha
550590008002	Kenosha
550590008003	Kenosha
550590009001	Kenosha
550590009002	Kenosha
550590009003	Kenosha
550590009004	Kenosha
550590009005	Kenosha
550590010001	Kenosha
550590010002	Kenosha
550590010003	Kenosha
550590011001	Kenosha
550590011002	Kenosha
550590011002	Kenosha
550590012001	Kenosha
550590012001	Kenosha
550590012002	Kenosha
220230015003	kenosna

Porter County **Porter County Porter County** Porter County **Porter County Porter County Porter County** Porter County Kenosha County

Chicago MSA PCAP 3/1/2024

550590012004	Kenosha
550590013001	Kenosha
550590013002	Kenosha
550590013003	Kenosha
550590013004	Kenosha
550590015001	Kenosha
550590015002	Kenosha
550590015004	Kenosha
550590016001	Kenosha
550590016002	Kenosha
550590016003	Kenosha
550590017001	Kenosha
550590017002	Kenosha
550590017003	Kenosha
550590018001	Kenosha
550590018002	Kenosha
550590021001	Kenosha
550590021002	Kenosha
550590021003	Kenosha
550590021004	Kenosha
550590022001	Kenosha
550590021003	Pleasant Prairie
550590029061	Salem Lakes
550590001011	Somers
550590001021	Somers
550590003001	Somers

Kenosha County Kenosha County

15 Appendix F: Climate Risk and Vulnerability Assessment for Chicago Region

Climate Risk and Vulnerability Assessment for the Chicago Metropolitan Region - 2019

Hazards

Climate Hazard	Probability	Consequence	Risk
Extreme Heat	3	3	9
Drought	2	3	6
Severe Thunderstorms	2	2	4
Flooding	3	3	9
Severe Winter Weather	2	2	4

Adaptive Capacity

Factor	Degree of Challenge
Access to Basic Services	0
Public Health	0
Housing	0
Inequality	0
Economic Health	0
Government Capacity	0
Resource Availability	0

Determining Risk Level

Probability of Hazard

Determine the current probability (likelihood of occurrence) of the hazard based on the options provided (do not know, low, moderate, high).

Probability		GCoM Options		
		3 High	Extremely likely that the hazard occurs (e.g., greater than 1 in 20 chance of occurrence)	
		2 Moderate	Likely that the hazard occurs (e.g., between 1 in 20 and 1 in 200 chance of occurrence)	
3		1 Low	Unlikely that the hazard occurs (e.g., between 1 in 200 and 1 in 2,000 chance of occurrence)	
0	0 Do not know	Region has not experienced or observed climate hazards in the past or has no ways of accurately reporting this		
		information based on evidence of data		

Consequence of Hazard

Determine the current consequence (outcome/impact/gravity) of the hazard based on the options provided (do not know, low, moderate, high).

Consequence		GCoM Options		
	3	High	The hazard represents a high (or the highest) level of potential concern for your jurisdiction. When it occurs, the	
	5	5 Figh	hazard results in (extremely) serious impacts to the jurisdiction and (catastrophic) interruptions to day-to-day life.	
	2	Moderate	The hazard represents a moderate level of potential concern for your jurisdiction. When it occurs, the hazard results	
2	2	Moderate	in impacts to your jurisdiction, but these are moderately significant to day-to-day life.	
	7	Laur	The hazard represents a lower (the lowest) level of potential concern for your jurisdiction. When it occurs, the	
	1 Low	LOW	hazard results in impacts to your jurisdiction, but these are deemed less significant (or insignificant) to day-to-day	
	0	0 Do not know	City has not experienced or observed climate hazards in the past of has no ways of accurately reporting this	
			information based on evidence or data.	

Risk Level

A hazard risk level is determined for current and future scenarios. Risk is determined based on the probability and consequence of a particular hazard. [Risk = Probability × Consequence]

Qualifying Impacts

Past Impacts

Include a description of the impacts experienced in the past including loss of human lives, economic and non-economic losses, environmental and other impacts. Heat waves have caused illnesses, hospitalizations, and deaths in vulnerable communities [1]

The Chicago region experienced a historic heat wave in 1995 that led to 700 heat-related deaths, followed by another heat wave in 1999 with more than 100 deaths. The 1995 heat wave resulted in major reforms to Chicago's emergency response programs: The city formed a Commission on Extreme Weather Conditions, developed a comprehensive Extreme Weather Operations Plan, and established better coordination among emergency responders call centers, and traffic management. [1]

Intensity

ow strong the hazard is		
	Change in Intensity	
	Increase Decrease No change Not know	

Increase

Frequency

low often the hazard occurs in the region
Change in Frequency
Increase Decrease No change Not known
Increase

Timescale

The timescale at which these changes are expected to o

Timescale Immediately | Short Term (by 2025) | Medium Term (by 2050) | Long Term (after 2050) | Not known

Short Term

Future Impacts

Select the sectors, assets, or services that are currently most impacted by the hazard and those that will be most impacted in the future. A general assessment of the magnitude of impact for each sector, asset, or service must be included.

Sectors, Assets, and Services	Magnitude of Future Impact	Description
Public Health	Low Moderate High Unknown	Air pollution, especially ozone, would get worse because of higher temperatures, aggravating chronic health conditions [4] Heat waves have caused illnesses, hospitalizations, and deaths in vulnerable communities [1] Additional heat-related deaths [1]
Residential		
Environment, Biodiversity, and Forestry		Increased temperatures are expected to exacerbate the presence of invasive species and diseases that have affected the region's forestry [1] Overnight low temperatures over 80F have the potential to have even more harmful effects on humans, livestock, and vegetation [3] Tree detainerstion and fire risk [5]
Transport		During the summer months, extreme heat could cause more pavement and railways to buckle, disrupting traffic and endangering commuters. [4]
Energy		More extreme heat would also increase demand for energy, leading to more blackouts and brownouts as demand surpasses capacity [4]
Emergency Services		Strain on emergency services [5]
Food and Agriculture		Higher average temperatures throughout the wider Midwest region may lead to declines in the productivity of commercial crops and contribute to invasive species growth and pollinator declines that impact overall agricultural producitivity. Projected higher temperatures by the end of the century are likely to cause negative impacts to livestock and breeding operations. This may lead to reduced milk and egg production.

Vulnerable Groups

[OPTIONAL] Determine the population groups in the region that are most vulnerable to the climate hazards and impacts. Vulnerable groups can be matched with each impacted sector or presented as a whole for each hazard.

Vulnerable	e Groups	Description
Women and Girls	Persons with Chronic Diseases	Elderly population; people of color; limited English proficiency; family income below poverty level; no health insurance
Children and Youth	Low-Income Households	coverage; people without air conditioning; people with chronic diseases [1]
Elderly	Unemployed Persons	People living in lands with high- and medium-intensity developments (defined as having greater than 50% impervious
Indigenous Populations	Persons in Sub-Standard Housing	surfaces) are 5-6°F hotter than the regional average [1]
Marginalized Groups	Other	
Persons with Disabilities		

Socioeconomic Characteristic ⁴⁹	Regional Po	opulation		ent Hottest ets Based on ee Temperature
	Count	Percent	Count	Percent
Total Population	8,459,768	100%	511,171	100%
Elderly Population (over 65 years)	1,013,640	12.0%	45,368	9.2%
People of Color ⁵⁰	4,030,135	47.6%	381,249	73.7%
Limited English Proficiency ⁵¹	1,029,670	12.2%	144,993	27.2%
Family Income below Poverty Level ⁵²	1,160,842	13.7%	101,134	19.7%
No Health Insurance Coverage	1,146,328	13.6%	125,787	23.0%

Table 2. Heat Vulnerability

Source: 2010-14 American Community Survey, 2010 U.S. Census, and CMAP analysis derived from Landsat 8.

Drought

Determining Risk Level

Probability of Hazard

Determine the current probability (likelihood of occurrence) of the hazard based on the options provided (do not know, low, moderate, high).

Probability	GCoM Options	
	3 High	Extremely likely that the hazard occurs (e.g., greater than 1 in 20 chance of occurrence)
	2 Moderate	Likely that the hazard occurs (e.g., between 1 in 20 and 1 in 200 chance of occurrence)
2	1 Low	Unlikely that the hazard occurs (e.g., between 1 in 200 and 1 in 2,000 chance of occurrence)
	Do not know	Region has not experienced or observed climate hazards in the past or has no ways of accurately reporting this information based on evidence of data

Consequence of Hazard

Determine the current consequence (outcome/impact/gravity) of the hazard based on the options provided (do not know, low, moderate, high).

Consequence			GCoM Options
	3	High	The hazard represents a high (or the highest) level of potential concern for your jurisdiction. When it occurs, the
		Ingii	hazard results in (extremely) serious impacts to the jurisdiction and (catastrophic) interruptions to day-to-day life.
	2	Moderate	The hazard represents a moderate level of potential concern for your jurisdiction. When it occurs, the hazard results
2	2	moderate	in impacts to your jurisdiction, but these are moderately significant to day-to-day life.
5	7	Low	The hazard represents a lower (the lowest) level of potential concern for your jurisdiction. When it occurs, the
	1	Low	hazard results in impacts to your jurisdiction, but these are deemed less significant (or insignificant) to day-to-day
	0	Do not know	City has not experienced or observed climate hazards in the past of has no ways of accurately reporting this
	0	DO HOL KHOW	information based on evidence or data.

Risk Level

A hazard risk level is determined for current and future scenarios. Risk is determined based on the probability and consequence of a particular hazard. [Risk = Probability × Consequence]

How strong the hazard is How often the hazard occurs in the region The timescale at which these changes of the timescale at the tinterval at the timescale at the timescale at the timescale at the	rought has had significant adverse effects on th			imental and other impacts.
Intensity Frequency Timescale How strong the hazard is Change in Intensity How often the hazard occurs in the region Timescale at which these changes of the course of the mediately 1 Short Term (by 2025) 1 (by 2050) [Long Term (after 2050)] Increase Decrease No change Not known Increase Increase Increase Increase Decrease No change Not known Increase Increase Increase Increase Increase Increase Fiture Impacts Increase Increase Increase Include a description of the impacts experienced in the past including loss of human lives, economic and non-economic losses, environmental and other impacts. To and aptifers that supply water to County, southeast Kendall County, and northern Kendall County could be at least partially desaturated 20 With limited access to Lake Michigan for drinking water, 21 communities who are upon already stressed groundwater supplies could face growing water supply issues during periods of drought. Municipalities may need to switch water sources and build new wells and tre which could increase the costs of water, Furthermore, because groundwater feeds into multiple water bodies, withdrawals from shallow aquifers would also negatively impact the ecosystem of the sectors, assets, or services that are currently most impacted by the hazard and those that will be most impacted in the future. A general assessment of the magnitude of impact (asset, or services that are currently most impacted by the hazard and those that will be most impacted in the future. A general assessement of the magnitude				
How strong the hazard is How often the hazard occurs in the region The timescale at which these changes of timescale Increase Decrease No change Not known Increase Decrease No change Not known Increase Increase Increase Increase Increase Increase Increase Increase Increase Increase Increase Increase Increase Inc				
How strong the hazard is How often the hazard occurs in the region The timescale at which these changes of timescale Increase Decrease No change Not known Increase Decrease No change Not known Increase Increase Decrease No change Not known Increase Increase Future Impacts Increase Increase Increase Increase Include a description of the impacts experienced in the past including loss of human lives, economic and non-economic losses, environmental and other impacts. The aquifer that provides water for many parts of northwest Will County and the eastern portion of Kane County could be completely depleted in 2050 - and aquifers that supply water to County, southeast Kendall County, and northern Kendall County could be at least partially destaurated.20 With limited access to Lake Michigan for drinking water, 21 communities who are upon already stressed groundwater supplies could face growing water supply issues during periods of drought. Municipalities may need to switch water sources and build new wells and they wells and they wells and they asset, or services that are currently most impacted by the hazard and those that will be most impacted in the future. A general assessment of the magnitude of impact for asset, or services is expected to increase by up to 12% und emission scenario [1] Sectors, Assets, and Services Magnitude of Future Impact Low Moderate High Unknown Water demand from all sectors is expected to increase by up to 12% und emissions scenario [1] Food and Agriculture Irrigation for agriculture is projected to see the largest re				
How strong the hazard is How often the hazard occurs in the region The timescale at which these changes of timescale Increase Decrease No change Not known Increase Decrease No change Not known Increase Increase Decrease No change Not known Increase Increase Sectors, Assets, and Services Magnitude of Future Impact Description Sectors, Assets, and Services Magnitude of Future Impact Description Sectors, Assets, and Services Magnitude of Future Impact Description Water Supply and Sanitation Water Supply and Sanitation Water demand from all sectors is expected to increase by up to 12% und emissions scenario [1]				
How strong the hazard is How often the hazard occurs in the region The timescale at which these changes of timescale Increase Decrease No change Not known Increase Decrease No change Not known Increase Increase Decrease No change Not known Increase Increase Sectors, Assets, and Services Magnitude of Future Impact Description Sectors, Assets, and Services Magnitude of Future Impact Description Sectors, Assets, and Services Magnitude of Future Impact Description Water Supply and Sanitation Water Supply and Sanitation Water demand from all sectors is expected to increase by up to 12% und emissions scenario [1]	toncity			
How strong the hazard is How often the hazard occurs in the region The timescale at which these changes of timescale Increase Decrease No change Not known Increase Decrease No change Not known Increase Increase Decrease No change Not known Increase Increase Future Impacts Increase Increase Increase Increase Include a description of the impacts experienced in the past including loss of human lives, economic and non-economic losses, environmental and other impacts. The aquifer that provides water for many parts of northwest Will County and the eastern portion of Kane County could be completely depleted in 2050 - and aquifers that supply water to County, southeast Kendall County, and northern Kendall County could be at least partially destaurated.20 With limited access to Lake Michigan for drinking water, 21 communities who are upon already stressed groundwater supplies could face growing water supply issues during periods of drought. Municipalities may need to switch water sources and build new wells and they wells and they wells and they asset, or services that are currently most impacted by the hazard and those that will be most impacted in the future. A general assessment of the magnitude of impact for asset, or services is expected to increase by up to 12% und emission scenario [1] Sectors, Assets, and Services Magnitude of Future Impact Low Moderate High Unknown Water demand from all sectors is expected to increase by up to 12% und emissions scenario [1] Food and Agriculture Irrigation for agriculture is projected to see the largest re	toncity			
Change in Intensity Change in Frequency Timescale Increase Decrease No change Not known Increase Decrease No change Not known Immediately Short Term (by 2025) (by 2050) Long Term (after 2050) Increase Increase Increase Immediately Short Term (by 2025) (by 2050) Long Term (after 2050) Future Impacts Include a description of the impacts experienced in the past including loss of human lives, economic and non-economic losses, environmental and other impacts. The aquifer that provides water for many parts of northwest Will County and the eastern portion of Kane County could be completely depleted in 2050 and aquifers that supply water to County, southeast Kendall County, and northern Kendall County could be at least partially desaturated.20 With limited access to Lake Michigan for drinking water, 21 communities who are upon already stressed groundwater supplies could face growing water supply issues during periods of drought. Municipalities may need to switch water sources and build new wells and tree which could increase the costs of water. Furthermore, because groundwater feeds into multiple water bodies, withdrawals from shallow aquifers would also negatively impact the ecosystem Select the sectors, assets, or services that are currently most impacted by the hazard and those that will be most impacted in the future. A general assessment of the magnitude of impact for asset, or service must be included. Sectors, Assets, and Services Magnitude of Future Impact Low Moderate High Unknown Description Water Supply and Sanitation Water demand from all sectors is	lensuy	Frequer	ncy	Timescale
Increase Decrease No change Not known Increase Decrease No change Not known Immediately Short Term (by 2025) (by 2050) Long Term (after 2050) Future Impacts Increase Increase Increase Include a description of the impacts experienced in the past including loss of human lives, economic and non-economic losses, environmental and other impacts. Immediately Short Term (by 2025) (by 2050) Long Term (after 2050) The aquifer that provides water for many parts of northwest Will County and the eastern portion of Kane County could be completely depleted in 2050 and aquifers that supply water to County, southeast Kendall County, and northern Kendall County could be at least partially desaturated.20 With limited access to Lake Michigan for drinking water, 21 communities who are upon already stressed groundwater supplies could face growing water supply issues during periods of drought. Municipalities may need to switch water sources and build new wells and tree which could increase the costs of water. Furthermore, because groundwater feeds into multiple water bodies, withdrawals from shallow aquifers would also negatively impact the ecosystem which could increase the costs of water. Furthermore, because groundwater feeds into multiple water bodies, withdrawals from shallow aquifers would also negatively impact the ecosystem conservice must be included. Select the sectors, assets, and Services Magnitude of Future Impact Low Moderate High Unknown Description Water Supply and Sanitation Water demand from all sectors is expected to increase by up to 12% und emissions scenario [1] Irrigation for agriculture is projected to see the largest relative incre	ow strong the hazard is	How oft	ten the hazard occurs in the region	The timescale at which these changes are ex
Increase Increase Increase Increase Increase Fuure impacts Increase Increase <td< td=""><td>Change in Intensity</td><td></td><td>Change in Frequency</td><td>Timescale</td></td<>	Change in Intensity		Change in Frequency	Timescale
Future Impacts Include a description of the impacts experienced in the past including loss of human lives, economic and non-economic losses, environmental and other impacts. The aquifer that provides water for many parts of northwest Will County and the eastern portion of Kane County could be completely depleted in 2050 and aquifers that supply water to County, southeast Kendall County, and northern Kendall County could be at least partially desaturated.20 With limited access to Lake Michigan for drinking water, 21 communities who are upon already stressed groundwater supplies could face growing water supply issues during periods of drought. Municipalities may need to switch water sources and build new wells and the which could increase the costs of water. Furthermore, because groundwater feeds into multiple water bodies, withdrawals from shallow aquifers would also negatively impact the ecosystem which could increase that are currently most impacted by the hazard and those that will be most impacted in the future. A general assessment of the magnitude of impact for asset, or services that are currently most impacted by the hazard and those that will be most impacted in the future. A general assessment of the magnitude of impact for asset, or services must be included. Select stip State State State State Currently most impacted by the hazard and those that will be most impacted in the future. A general assessment of the magnitude of impact for asset, or services that are currently most impacted by the hazard and those that will be most impacted in the future. A general assessment of the magnitude of impact for asset, or services that are currently Moderate High Unknown Vater Supply and Sanitation Water General form all sectors is expected to increase by up to 12% und emissions s	Increase Decrease No change Not	own Inc	crease Decrease No change Not known	Immediately Short Term (by 2025) Medi (by 2050) Long Term (after 2050) Not
Include a description of the impacts experienced in the past including loss of human lives, economic and non-economic losses, environmental and other impacts. The aquifer that provides water for many parts of northwest Will County and the eastern portion of Kane County could be completely depleted in 2050 and aquifers that supply water to County, southeast Kendall County, and northern Kendall County could be at least partially desaturated.20 With limited access to Lake Michigan for drinking water, 21 communities who are upon already stressed groundwater supplies could face growing water supply issues during periods of drought. Municipalities may need to switch water sources and build new wells and tree which could increase the costs of water. Furthermore, because groundwater feeds into multiple water bodies, withdrawals from shallow aquifers would also negatively impact the ecosystem Select the sectors, assets, or services that are currently most impacted by the hazard and those that will be most impacted in the future. A general assessment of the magnitude of impact for asset, or service must be included. Sectors, Assets, and Services Low Moderate High Unknown Water Supply and Sanitation Water Supply and Sanitation Food and Agriculture Include a description Include a description Include a description Include a description for agriculture is projected to see the largest relative increase is			Increase	
Include a description of the impacts experienced in the past including loss of human lives, economic and non-economic losses, environmental and other impacts. The aquifer that provides water for many parts of northwest Will County and the eastern portion of Kane County could be completely depleted in 2050 and aquifers that supply water to County, southeast Kendall County, and northern Kendall County could be at least partially desaturated.20 With limited access to Lake Michigan for drinking water, 21 communities who are upon already stressed groundwater supplies could face growing water supply issues during periods of drought. Municipalities may need to switch water sources and build new wells and tree which could increase the costs of water. Furthermore, because groundwater feeds into multiple water bodies, withdrawals from shallow aquifers would also negatively impact the ecosystem Select the sectors, assets, or services that are currently most impacted by the hazard and those that will be most impacted in the future. A general assessment of the magnitude of impact for asset, or service must be included. Sectors, Assets, and Services Low Moderate High Unknown Water Supply and Sanitation Water Supply and Sanitation Increase the largest relative increase in [1] Food and Agriculture				
Sectors, Assets, and Services Low Moderate High Unknown Description Water Supply and Sanitation Water demand from all sectors is expected to increase by up to 12% unc emissions scenario [1] Food and Agriculture Irrigation for agriculture is projected to see the largest relative increase is	pon already stressed groundwater supplies cou hich could increase the costs of water. Furtherm elect the sectors, assets, or services that are curr	face growing water supply issues dur e, because groundwater feeds into n thy most impacted by the hazard and	ring periods of drought. Municipalities may ne nultiple water bodies, withdrawals from shallow d those that will be most impacted in the futur	eed to switch water sources and build new wells and treatme w aquifers would also negatively impact the ecosystems of s
Water Supply and Sanitation Water demand from all sectors is expected to increase by up to 12% unc emissions scenario [1] Food and Agriculture Irrigation for agriculture is projected to see the largest relative increase is	Sectors, Assets, and Services	•	•	Description
Water Supply and Sanitation emissions scenario [1] Food and Agriculture Irrigation for agriculture is projected to see the largest relative increase is	Weter Course and Constantion			om all sectors is expected to increase by up to 12% under a
Food and Adriculture	water Supply and Sanitation		emissions scenario	o [1]
demand compared to any other water use [1]	Food and Agriculture		Irrigation for agrie	culture is projected to see the largest relative increase in wa
	-			
	Environment, Biodiversity, and			ojected summertime droughts will lead to ecosystem stress a
	-		loss [1]	
	Forestry			
	-			
	-			
	-			
	-			
	-			
Environment, Biodiversity, and An increase in projected summertime droughts will lead to ecosystem s	Food and Agriculture		emissions scenario Irrigation for agri demand compare	o [1] culture is projected to see the largest relative increase ed to any other water use [1]
	Environment, Biodiversity, and			
	Environment, Biodiversity and			
			demand compare	ed to any other water use [1]
	rood and Agriculture		demand compare	ad to any other water use [1]
demand compared to any other water use [1]	Food and Agriculture		0 0	
demand compared to any other water use [1]	Food and Amiguiture		Irrigation for agrie	culture is projected to see the largest relative increase in wa
Food and Adriculture				• •
Food and Agriculture is projected to see the largest relative increase i	water supply and sanitation		emissions scenario	o [1]
Food and Agriculture is projected to see the largest relative increase i	Water Supply and Sanitation			
Food and Agriculture is projected to see the largest relative increase i	Water Supply and Sanitation			
emissions scenario [1] Food and Agriculture	Water Supply and Sanitation			om all sectors is expected to increase by up to 12% under a
Food and Agriculture is projected to see the largest relative increase i	Water Supply and Sanitation		Water demand fro	
Water Supply and Sanitation emissions scenario [1] Food and Agriculture Irrigation for agriculture is projected to see the largest relative increase is		Low Moderate High Ur		•
Water Supply and Santation emissions scenario [1] Food and Agriculture Irrigation for agriculture is projected to see the largest relative increase in the largest relative	Sectors, Assets, and Services	•	nknown	•
Water Supply and Sanitation Water demand from all sectors is expected to increase by up to 12% unc emissions scenario [1] Food and Agriculture Irrigation for agriculture is projected to see the largest relative increase in Increase in the largest relative increase in th	Sectors, Assets, and Services	•	•	Description
Water Supply and Santation emissions scenario [1] Food and Agriculture Irrigation for agriculture is projected to see the largest relative increase in the largest relative		Low Moderate High Ur		•
Water Supply and Sanitation emissions scenario [1] Food and Agriculture Irrigation for agriculture is projected to see the largest relative increase is	Sectors, Assets, and Services	Low Moderate High Ur		•
Water Supply and Sanitation Water demand from all sectors is expected to increase by up to 12% unc emissions scenario [1] Food and Agriculture Irrigation for agriculture is projected to see the largest relative increase is	Sectors, Assets, and Services	•	•	Description
Water Supply and Sanitation Water demand from all sectors is expected to increase by up to 12% und emissions scenario [1] Food and Agriculture Irrigation for agriculture is projected to see the largest relative increase is	Sectors, Assets, and Services	•	•	Description
Water Supply and Sanitation Water demand from all sectors is expected to increase by up to 12% und emissions scenario [1] Food and Agriculture Irrigation for agriculture is projected to see the largest relative increase is	Sectors, Assets, and Services	•	•	Description
Low Moderate High Unknown Water demand from all sectors is expected to increase by up to 12% unc Water Supply and Sanitation emissions scenario [1] Food and Agriculture Irrigation for agriculture is projected to see the largest relative increase is		Magnitude of Future I	mpact	Description
Food and Agriculture emissions scenario [1] Food and Agriculture is projected to see the largest relative increase	elect the sectors, assets, or services that are curr sset, or service must be included. Sectors, Assets, and Services	tly most impacted by the hazard and Magnitude of Future In	d those that will be most impacted in the futur mpact nknown	e. A general assessment of the magnitude of impact f

whole for each hazard.

Vulnerab	le Groups	Description
Women and Girls	Persons with Chronic Diseases	Communities who are dependent upon already stressed groundwater supplies [4]
Children and Youth	Low-Income Households	
Elderly	Unemployed Persons	
Indigenous Populations	Persons in Sub-Standard Housing	
Marginalized Groups	Other	
Persons with Disabilities		

Severe Thunderstorms

Determining Risk Level

Probability of Hazard

Determine the current probability (likelihood of occurrence) of the hazard based on the options provided (do not know, low, moderate, high).

Probability			GCoM Options
	3	High	Extremely likely that the hazard occurs (e.g., greater than 1 in 20 chance of occurrence)
	2	Moderate	Likely that the hazard occurs (e.g., between 1 in 20 and 1 in 200 chance of occurrence)
2	1	Low	Unlikely that the hazard occurs (e.g., between 1 in 200 and 1 in 2,000 chance of occurrence)
	0	Do not know	Region has not experienced or observed climate hazards in the past or has no ways of accurately reporting this
	0		information based on evidence of data

Consequence of Hazard

Determine the current consequence (outcome/impact/gravity) of the hazard based on the options provided (do not know, low, moderate, high).

	GCoM Options		
3	High	The hazard represents a high (or the highest) level of potential concern for your jurisdiction. When it occurs, the	
	rign	hazard results in (extremely) serious impacts to the jurisdiction and (catastrophic) interruptions to day-to-day life.	
2	Modorato	The hazard represents a moderate level of potential concern for your jurisdiction. When it occurs, the hazard results	
2	2 1400001010	in impacts to your jurisdiction, but these are moderately significant to day-to-day life.	
7	1.000	The hazard represents a lower (the lowest) level of potential concern for your jurisdiction. When it occurs, the	
1	1 Low	hazard results in impacts to your jurisdiction, but these are deemed less significant (or insignificant) to day-to-day	
0	Do not know	City has not experienced or observed climate hazards in the past of has no ways of accurately reporting this	
0		information based on evidence or data.	
	3 2 1 0	3 High 2 Moderate 1 Low 0 Do not know	

Risk Level

A hazard risk level is determined for current and future scenarios. Risk is determined based on the probability and consequence of a particular hazard. [Risk = Probability x Consequence]

Risk	
4	

Qualifying Impacts

Past Impacts

Include a description of the impacts experienced in the past including loss of human lives, economic and non-economic losses, environmental and other impacts.

Intensity

How strong the hazard is

Change in Intensity

Increase | Decrease | No change | Not known

Increase

Frequency

How often the hazard occurs in the region
Change in Frequency

Increase | Decrease | No change | Not known

Increase

Timescale

The timescale at which these changes are expected to a

Timescale Immediately | Short Term (by 2025) | Medium Term (by 2050) | Long Term (after 2050) | Not known

Future Impacts

Select the sectors, assets, or services that are currently most impacted by the hazard and those that will be most impacted in the future. A general assessment of the magnitude of impact for each sector, asset, or service must be included.

Sectors, Assets, and Services	Magnitude of Future Impact	Description
	Low Moderate High Unknown	
Public Health		More frequent and intense storms would also increase the risk of accidents, particularly
r ubite ricultur		on roads. [4]
		Severe thunderstorms, ice storms, and strong winds could damage overhead power
Energy		lines, and cause power outages that disrupt business productivity and threaten public
		safety. [4]

Vulnerable Groups

[OPTIONAL] Determine the population groups in the region that are most vulnerable to the climate hazards and impacts. Vulnerable groups can be matched with each impacted sector or presented as a whole for each hazard.

Vulnerab	le Groups	
Women and Girls	Persons with Chronic Diseases	
Children and Youth	Low-Income Households	
Elderly	Unemployed Persons	
Indigenous Populations	Persons in Sub-Standard Housing	
Marginalized Groups	rginalized Groups Other	
Persons with Disabilities		
Persons with Disabilities		

Flooding

Determining Risk Level

Probability of Hazard

Determine the current probability (likelihood of occurrence) of the hazard based on the options provided (do not know, low, moderate, high).

Probability				GCoM Options	
		3	High	Extremely likely that the hazard occurs (e.g., greater than 1 in 20 chance of occurrence)	
		2	Moderate	Likely that the hazard occurs (e.g., between 1 in 20 and 1 in 200 chance of occurrence)	
3	3	1	Low	Unlikely that the hazard occurs (e.g., between 1 in 200 and 1 in 2,000 chance of occurrence)	
		0	0	Do not know	Region has not experienced or observed climate hazards in the past or has no ways of accurately reporting this
		0		information based on evidence of data	

Consequence of Hazard

Determine the current consequence (outcome/impact/gravity) of the hazard based on the options provided (do not know, low, moderate, high).

Consequence			GCoM Options
	2	High	The hazard represents a high (or the highest) level of potential concern for your jurisdiction. When it occurs, the
		ingn	hazard results in (extremely) serious impacts to the jurisdiction and (catastrophic) interruptions to day-to-day life.
	2	Moderate	The hazard represents a moderate level of potential concern for your jurisdiction. When it occurs, the hazard results
2	2		in impacts to your jurisdiction, but these are moderately significant to day-to-day life.
3	1	Low	The hazard represents a lower (the lowest) level of potential concern for your jurisdiction. When it occurs, the
		Low	hazard results in impacts to your jurisdiction, but these are deemed less significant (or insignificant) to day-to-day
	0	Do not know	City has not experienced or observed climate hazards in the past of has no ways of accurately reporting this
			information based on evidence or data.

Risk Level

A hazard risk level is determined for current and future scenarios. Risk is determined based on the probability and consequence of a

particular hazard. [Risk = Probability x Consequence]

Risk
9

Qualifying Impacts

Past Impacts

Include a description of the impacts experienced in the past including loss of human lives, economic and non-economic losses, environmental and other impacts. Flooding has led to major road, rail, and utility outages, sewer overflows, mold, damaged property, disruptions to freight traffic, and financial losses for local businesses [1]

Freauencv

Flooding in urban areas has resulted in \$1.975 billion of documented damages in the CMAP region from 2007-2014 alone (85.2% of pay-outs in the entire state) [1]

Intensity

How stro	ong the hazard is	
	Change in Intensity	
	Increase Decrease No change Not known	
	Increase	

-	zard occurs in the region Change in Frequency
	ecrease No change Not known
	Increase

Timescale

The timescale at which these changes are expected to a Timescale Immediately | Short Term (by 2025) | Medium Term

(by 2050) | Long Term (after 2050) | Not known

Short Term

Future Impacts

Include a description of the impacts experienced in the past including loss of human lives, economic and non-economic losses, environmental and other impacts. In areas along rivers and streams, floodplains would flood more frequently. Drainage systems in built-out parts of the region would often be overwhelmed, causing more basement backups and ponding in yards and parks, while impairing access on roads. By mid-century, federal and state governments, residents, businesses, and municipalities will likely be paying significantly more to address property damage and accidents caused by flooding and rain. Private insurers may also choose to exclude flood prone areas, particularly where stormwater infrastructure has not been upgraded, from coverage, leading to greater dependence on federal programs. [4]

Select the sectors, assets, or services that are currently most impacted by the hazard and those that will be most impacted in the future. A general assessment of the magnitude of impact for each sector, asset, or service must be included.

Sectors, Assets, and Services	Magnitude of Future Impact	Description
Sectors, Assets, and Services	Low Moderate High Unknown	Description
		Heavier rains are expected to increase scouring and deterioration of bridges [1]
		Flooding and severe weather will likely impair surface transportation including cars,
Transport		busses, trucks, and trains more frequently by causing congestion, road closures, and
		accidents, leading to time lost and increased costs due to repeated rerouting [4]
Water Supply and Sanitation		More severe storms and flooding are likely to increase non-point source pollution [1]
Residential		
Commercial		Flooding and transportation or electricity outages can affect local business operations
connercial		and employee commutes [1]
Environment, Biodiversity, and		Ravine and slope degradation [5]
Forestry		
		Flooded areas that remain stagnant may harbor insect growth and could result in vector-
Public Health		borne disease outbreaks and persistent moisture inside buildings due to flooding and
		seepage can lead to mold growth which decreases indoor air quality and compromises
		respiratory health [5]

Vulnerable Groups

[OPTIONAL] Determine the population groups in the region that are most vulnerable to the climate hazards and impacts. Vulnerable groups can be matched with each impacted sector or presented as a whole for each hazard.

	Vulnerab	le Groups
Women and	l Girls	Persons with Chronic Diseases
Children and	Youth	Low-Income Households
Elderly		Unemployed Persons
Indigenous Pop	oulations	Persons in Sub-Standard Housing
Marginalized	Groups	Other
Persons with Di	sabilities	

Severe Winter Weather

Determining Risk Level

Probability of Hazard

Determine the current probability (likelihood of occurrence) of the hazard based on the options provided (do not know, low, moderate, high).

Probability			GCoM Options
	3	High	Extremely likely that the hazard occurs (e.g., greater than 1 in 20 chance of occurrence)
	2	Moderate	Likely that the hazard occurs (e.g., between 1 in 20 and 1 in 200 chance of occurrence)
2	1	Low	Unlikely that the hazard occurs (e.g., between 1 in 200 and 1 in 2,000 chance of occurrence)
	0	Do not know	Region has not experienced or observed climate hazards in the past or has no ways of accurately reporting this information based on evidence of data

Consequence of Hazard

Determine the current consequence (outcome/impact/gravity) of the hazard based on the options provided (do not know, low, moderate, high).

Consequence			GCoM Options
	2	High	The hazard represents a high (or the highest) level of potential concern for your jurisdiction. When it occurs, the
	5	підп	hazard results in (extremely) serious impacts to the jurisdiction and (catastrophic) interruptions to day-to-day life.
	2	Moderate	The hazard represents a moderate level of potential concern for your jurisdiction. When it occurs, the hazard results
2	2	Moderale	in impacts to your jurisdiction, but these are moderately significant to day-to-day life.
2	1	,	The hazard represents a lower (the lowest) level of potential concern for your jurisdiction. When it occurs, the
	1	Low	hazard results in impacts to your jurisdiction, but these are deemed less significant (or insignificant) to day-to-day
	0	Do not know	City has not experienced or observed climate hazards in the past of has no ways of accurately reporting this
	0	DO HOL KHOW	information based on evidence or data.

Risk Level

A hazard risk level is determined for current and future scenarios. Risk is determined based on the probability and consequence of a

particular hazard. [Risk = Probability x Consequence]

-		
	Risk	
	4	

Qualifying Impacts

Past Impacts

Include a description of the impacts experienced in the past including loss of human lives, economic and non-economic losses, environmental and other impacts.

Inte

Intensity	Frequency
How strong the hazard is	How often the hazard occurs in the region
Change in Intensity	Change in Frequency
Increase Decrease No change Not known	Increase Decrease No change Not known
Increase	Decrease

The timescale at which these changes are expected to o

Timescale

Timescale Immediately | Short Term (by 2025) | Medium Term (by 2050) | Long Term (after 2050) | Not known

Long Term

Future Impacts

Select the sectors, assets, or services that are currently most impacted by the hazard and those that will be most impacted in the future. A general assessment of the magnitude of impact for each sector, asset, or service must be included.

Sectors, Assets, and Services	Magnitude of Future Impact	Description
	Low Moderate High Unknown	
Transport		These winter temperature patterns may lead to more freeze-thaw events, which lead to
		wear and tear on the built environment [1]
		More frequent freeze-thaw cycles would increase the risk of water pipes bursting [4]
		Severe thunderstorms, ice storms, and strong winds could damage overhead power
Energy		lines, and cause power outages that disrupt business productivity and threaten public
		safety. [4]
		Water supply service interruptions due to increased cold and the extreme freeze/thaw
		cycle is leading to increased applications of salt during the winter to combat more
Water Supply and Sanitation		frequent ice buildup on roadways. The snow melt runoff, contaminated with this higher
		level of salt, will eventually reach the lake where it may have negative impacts on the
Public Health		More frequent and intense storms would also increase the risk of accidents, particularly
		on roads. [4]

Vulnerable Groups

[OPTIONAL] Determine the population groups in the region that are most vulnerable to the climate hazards and impacts. Vulnerable groups can be matched with each impacted sector or presented as a whole for each hazard.

Vulnera	ble Groups	Description
Women and Girls	Persons with Chronic Diseases	
Children and Youth	Low-Income Households	
Elderly	Unemployed Persons	
Indigenous Populations	Persons in Sub-Standard Housing	
Marginalized Groups	Other	
Persons with Disabilities		

Adaptive Capacity

Determining Adaptive Capacity of the Region

Adaptive Capacity

Determine the degree in which the region is able to adapt to climate change. Select factors that will affect the region's adaptive capcity and influence climate resilience efforts by hindering the climate change adaptation actions within the regional jurisdiction.

Factor		Degree of Challenge
Select from dropdown	Effect on Adaptive Capacity	High Moderate Low No
Select from aropaowin		Change/Do Not Know
Access to Basic Services	Transportation and power disruptions [1]	
Public Health	Heat waves have led to heat-related illnesses and mortality. Elderly residents,	
	people with chronic diseases, and people without access to air conditioning are	
	particularly susceptible to heat waves [1]	
Housing	Widespread and chronic flooding has damaged homes (sometimes irreparably),	
	causing evacuations and significant costs [1]	
Inequality	With fewer financial resources, lower income residents would be less able to	
	afford housing in areas that are less exposed to the urban heat island effect [4]	
Economic Health	Slow rate of growth, declining sales and manufacturing production [1]	
Government Capacity	Some issues are for the private sector or other levels of government to address.	
	In some cases, the range of solutions available to municipalities is shaped by	
	policies at other levels of government [2]	
Resource Availability	The aquifer that provides water for many parts of northwest Will County and the	
	eastern portion of Kane County could be completely depleted in 2050 [4]	

Sources

- 1 CMAP Climate Resilience Strategy
- 2 CMAP Climate Adaptation Toolkit
- **3** CMAP Climate Adaptation Toolkit (Appendix A: Primary Impacts
- 4 CMAP Changed Climate Memo
- 5 City of Highland Park Climate Hazard Assessment
- 6 Guidebook, Using Climate Information in Local Planning

16 Appendix G: Plans Reviewed in the Creation of the Chicago MSA PCAP

Area or Organization	Plan name	Year
	Pla d'Adaptació al Canvi Climàtic de l'Àrea	
Barcelona Region, Spain	Metropolitana de Barcelona	2018
	Brussels Capital Region's Energy and Climate Plan	
Brussels Region, Belgium	2030	2019
City and County of Denver	Climate Adaptation Plan	2014
City of Asheville, NC	Building a Climate Resilient Asheville	2019
City of Aurora	Sustainability Plan	2008
City of Batavia	Environmental Identity	2013
City of Chicago	Chicago's 2022 Climate Action Plan	
City of Chicago	Chicago Climate Action Plan	2008
City of Chicago	Resilient Chicago	2019
City of Chicago	Sustainable Chicago	2012
City of Columbus	Columbus Climate Adaptation Plan	2018
City of Des Plaines	Sustain Des Plaines	2011
City of Elgin	Sustainability Action Plan	2013
City of Elmhurst	Comprehensive Plan, Sustainability Chapter Climate	2009
City of Evanston	Climate Action and Resilience Plan	2018
City of Highland Park	Climate Hazard Assessment	2019
City of Highland Park	Sustainability Strategic Plan	2010
City of Indianapolis	Thrive Indianapolis	2019
City of Naperville	Environmental Sustainability Plan	2010
City of New Orleans, LA	Climate Action for a Resilient New Orleans	2017
City of Normal	Community-Wide Sustainability Plan	2010
City of Oakland, CA	Equitable Climate Action Plan	2020
City of Santa Monica, CA	Climate Action & Adaptation Plan	2019
City of Seattle, WA	Seattle Climate Action Plan	2013
City of St. Louis, MO	Climate Action & Adaptation Plan	2017
City of Woodstock	Environmental Plan	2010
Climate Action KC (Kansas City		
region)	Climate Action Playbook	2019
	Climate Adaptation Guidebook for Municipalities in	
СМАР	the Chicago Region	2013
СМАР	ON TO 2050 Regional Comprehensive Plan	2018
СМАР	Plan of Action for Regional Transit	2023
ComEd	Beneficial Electrification Plan	2022

	Chicago MSA PCAP .	3/1/2024
	Cook County Climate Change and Public Health Action	
Cook County	Plan	2012
Global Covenant of Mayors for		
Climate and Energy	Common Reporting Framework	2018
Lake County	Strategy for Sustainable Lake County	2009
Metropolitan Mayors Caucus	Greenest Region Compact	2016
Metropolitan Washington Council of		
Governments (Washington, DC	Metropolitan Washington 2030 Climate and Energy	
region)	Action Plan	2020
NIRPC	NWI 2050+	2023
RTA	Transit is the Answer	2023
U.N. Office for Disaster Risk		2010
Reduction	Disaster Resilience Scorecard for Cities	2018
U.N. Office for Disaster Risk Reduction	Sendai Framework for Disaster Risk Reduction 2015- 2030	2015
	2030	2015
Verband Region Stuttgart (Stuttgart	Climate Diapaing Strategy	2010
region, Germany)	Climate Planning Strategy Environmental Action Plan	2019
Village of Algonquin		2010
Village of Buffalo Grove	Environmental Plan	2014
Village of Deer Park	Deer Park Sustainability Report	2020
Village of Deerfield	Climate Action Report	2022
Village of Elburn	Comprehensive Plan, Sustainability Chapter	2013
Village of Homer Glen	Green Vision	2004
Village of Hoffman Estates	Sustainability Plan	2013
Village of La Grange Park	Sustainability Plan	2012
Village of Lombard	Local Climate Action Plan	2012
Village of Millbrook	Comprehensive Plan	2009
Village of Monee, Peotone, University		
Park	Green Communities Vision	2009
Village of Niles	Environmental Action Plan	2013
Village of Northbrook	Northbrook Climate Action Plan	2021
Village of Oak Park	Climate Ready Oak Park	2022
Village of Oak Park/River Forest	Sustainability Plan	2012
Village of Orland Park	Comprehensive Plan, Sustainability Chapter	2013
Village of Park Forest	Growing Green: Park Forest Sustainability Plan	2012
Village of Park Forest	Park Forest Climate Action and Resilience Plan	2019
Village of Robbins	Green Communities Vision	2004
Village of Schaumburg	Comprehensive Green Action Plan	2008
Village of Skokie	Environmental Sustainability Plan	2022
Village of Sleepy Hollow	Green Communities Vision	2004
Village of Winnetka	Environmental & Forestry Commission, Strategic Plan	2010

Priority Climate Action Plan for the Chicago Metropolitan Statistical Area, 2024

Produced by: Metropolitan Mayors Caucus 433 W. Van Buren Street, Suite 450 Chicago, IL 60607

Contact: Edith Makra, Director of Environmental Initiatives <u>emakra@mayorscaucus.org</u> 630-327-4193

