Energy Academy

Session #2: Energy Markets Metropolitan Mayors Caucus | The Power Bureau

February 1, 2023

Ť.

HOUSEKEEPING	 Course-related items
RESOURCES	 Readings Website of the Week
LECTURE	 Wholesale Energy Markets & Operations Retail Energy Markets & Operations
DISCUSSION	 Open

HOUSEKEEPING

ENERGY MARKETS: SUPPLY, DEMAND AND PRICES

Course Mechanics	Website. <u>https://mayorscaucus.org/energy-academy/</u> Schedule. Invitations with link have been emailed to attendees. Each class offered on two (2) different dates
Readings and Website of the Week	 Description. Each class will include links to external energy-related materials and resources including industry reports, white papers, and tools that the instructor has found to be valuable. Purpose. While these are not assignments, attendees are encouraged to examine the materials to acquire additional background and context for the classes.
Recommendations	Please feel free to share any ideas and recommendations for improvements to the course and its content!

RESOURCES

METROPOLITAN MAYORS CAUCUS | THE POWER BUREAU

RESOURCES

Weekly Readings

US Annual Energy Outlook	 Link: <u>Annual Energy Outlook, 2022</u> Source: US Department of Energy, Energy Information Administration Description: Comprehensive outlook for energy supply, consumer demand, fuels, and other energy market elements in the US
State of the Markets Energy Primer	Link: <u>FERC State of the Markets Energy Primer: A Handbook for</u> <u>Energy Market Basics</u> Source: Federal Energy Regulatory Commission Description: Great background on energy markets in the US
World Energy Outlook, 2022	Link: <u>World Energy Outlook, 2022</u> Source: International Energy Agency Description: Detailed information on energy trends and transitions in over 30 member and affiliate countries

RESOURCES

Weekly Readings

Website of the Week

- Google Project Sunroof
- "Project Sunroof puts Google's expansive data in mapping and computing resources to use, helping calculate the best solar plan for you."
- Enter a street address and Google calculates a solar array that can be accommodated on rooftop space, the approximate cost of the array, and the level of annual energy generation.
- An effective tool to answer basic questions and build interest in solar

Google Project Sunroof

≡ Google Project Sunroof

Fine-tune your information to find out how much you could save.

YOUR AVERAGE MONTHLY ELECTRIC BILL	YOUR RECOMMENDED SOLAR INSTALLATION SIZE				
We use your bill to estimate how much electricity you use based on typical utility rates in your area.	This size will cover about 86% of your electricity usage. Solar installations are sized in kilowatts (kW).				
\$100 -	9.8 kW				

LECTURE

METROPOLITAN MAYORS CAUCUS | THE POWER BUREAU

ENERGY MARKETS

CONTEXT

Wholesale Markets

Wholesale = Sale of Energy from Generators to Resellers (utilities, marketers, etc.)

ENERGY MARKETS

CONTEXT

- Wholesale Markets
- Retail Markets

Retail = Sale of Energy to Consumers (Industrial, Commercial, Residential)

HOW THEY OPERATE

Objective: Reliability

Grid frequency must remain within narrow ranges to ensure system reliability

Power balance should increase

TOO MUCH Power balance should reduce

HOW THEY OPERATE

- Objective: Reliability
- Approaches

Wholesale markets have a variety of approaches to manage reliability

Chemical Storage Involuntary Load Transmission Expansion Coal Ramping Transmission Pumped Hydro **Demand Response** Reinforcement CT and CCGT Storage Gas Ramping Cost Strategic RE Curtailment^a **Thermal Storage** Advanced Network Joint Market Management Expanded Balancing Operation Hydro Ramping Fooprint/Joint Industrial & System Operation^b Increased Ancillary Commercial Demand Service Liquidity Sub-hourly Scheduling and Improved Energy Dispatch Market Design **Option costs are system-dependent RE** Forecasting and evolving over time **Grid Codes** SYSTEM FLEXIBLE MARKETS LOAD **NETWORKS** STORAGE OPERATION GENERATION Type of Intervention

RELATIVE ECONOMICS OF INTEGRATION OPTIONS

Wholesale markets use the unique characteristics of generation to meet demand

WHOLESALE ENERGY MARKETS

HOW THEY OPERATE

- Objective: Reliability
- Approaches
- Tools

HOW THEY OPERATE

- Objective: Reliability
- Approaches
- Tools
- Severe Consequences of Failure

Last year in Texas, the grid operator had to use rolling blackouts to prevent a total grid failure

"The ERCOT system frequency dropped below 59.4 Hz for 4 minutes and 23 seconds on the morning of February 15. Consequently, the grid was within minutes of a much more serious and potentially complete blackout on the morning of February 15." Public Utility Commission

METROPOLITAN MAYORS CAUCUS | THE POWER BUREAU

HOW THEY OPERATE

- Objective: Reliability
- Approaches
- Tools
- Severe Consequences of Failure
- Regional Wholesale Power Markets

Wholesale markets are arranged on a voluntary regional basis

HOW THEY OPERATE

- Objective: Reliability
- Approaches
- Tools
- Severe Consequences of Failure
- Regional Wholesale Power Markets
 - Organized Markets. Managed by a non-profit grid managers.

Some wholesale markets are "organized" and have a central operator that manages the regional system to ensure reliability

HOW THEY OPERATE

- Objective: Reliability
- Approaches
- Tools
- Severe Consequences of Failure
- Regional Wholesale Power Markets
 - Organized Markets. Managed by a non-profit grid managers.
 - <u>Traditional Markets.</u> Managed by local utilities

Some wholesale markets are "traditional" and ensure reliability through cooperation between local utilities

RELIABILITY APPROACH IN ILLINOIS

- PJM is our Regional Transmission Company
- PJM uses auction processes to select power generators to match fluctuating demand within the region
- Generation can be secured across multiple planning horizons
 - <u>Capacity Market</u>. Secures the generating capacity 3 years in advance
 - Day Ahead Market. Secures the generation 1 day in advance
 - <u>Real Time Market.</u> Secures the generation 1 hour in advance
 - <u>Ancillary Market.</u> Secures the generation 1 day in the next seconds and minutes

PJM is the Regional transmission Organization that manages the wholesale power market in Northern Illinois (ComEd)

	PJM (RTO)	 Uses auctions to select generators that ensure reliability 		
	CAPACITY MARKET	 Commitments to be able to deliver generation <u>3 years</u> in the future 		
	DAY AHEAD MARKET	 Commitments to deliver generation <u>1-day</u> in ahead in the future 		
	REAL TIME MARKET	 Commitments to deliver generation <u>1-hour</u> in the future 		
	ANCILLARY MARKET	 Commitments to deliver generation in seconds or minutes 		

Energy prices are market-based and reflect the relative level of supply and demand

CAPACITY MARKET

- Bidding to be available to deliver energy to the grid if called upon at a future date
- Intended to improve long term reliability by compensating generators for providing longer term commitments
- Auction processes can occur 1-3 years in advance
- Penalties for non-performance

PJM compensates generators to be available to deliver power three years into the future at a price that is set through an auction process

RPM Auction Schedule

DAY AHEAD AND REAL TIME MARKETS

- Generators bid to deliver energy during specific hours <u>on the following day</u>
- Auction sets single clearing price
 - An hourly projected supply requirement is set by the grid manager (A)
 - Generator bids are arranged according to price (B)
 - Clearing price is set by the marginal bidder's offer (C)
 - All bidders beneath the clearing price receive the clearing price (D)

MEGAWATTS

Day-Ahead and Real-Time Market Prices are also set by the auction process

IMPLICATIONS

 Capacity prices (that are ultimately paid for by consumers) <u>change annually</u> (June through May) and vary by subregion Capacity prices change annually for each subregion based on auction results

IMPLICATIONS

- Capacity prices (that are ultimately paid for by consumers) <u>change annually</u> (June through May) and vary by subregion
- Energy prices (that are ultimately paid for by consumers) <u>change hourly</u> (every day) and vary by subregion

Energy prices change hourly for each subregion based on auction results

METROPOLITAN MAYORS CAUCUS | THE POWER BUREAU

The total cost of energy for consumers is the sum of Supply + Delivery + Taxes/Fees

RETAIL ENERGY MARKETS

HOW THEY OPERATE

Objective: Consumer Cost

Competed An Exelon Company comed.com Customer Service / Power Outage English	Page 1 of 2 Account Number 000000000 Name CUSTOMER NAME Service Location SERVICE ADDRESS CITY Phone Number 000-000-0000		Bill Sun Previous Total Pa	Bill Summary Previous Balance \$55 Total Payments - Thank You \$55 Amount Due on February 26, 2016 \$44			Supply (65-90%)	
1-877-4COMED1 (1-877-426-6331) Español 1-800-95-LUCES (1-800-955-8237)	Issue Date	February 11, 2016						
Hearing/Speech Impaired 1-800-572-5789 (TTY)	Meter Informati	ion						
For Electric Supply Choices visit pluginillinois.org	Read Meter Date Number	Load Type	Reading Type	Previous	Meter Readin Present	g Difference	Multiplier X Usage	
Your Usage Profile 13-Month Usage (Total kWh)	1/12- 2/11 00000000	00 General Service	Total kWh	513 Actual	553 Act	ual 40	120 4800	Delivery
5280 HERENER	2/11 00000000 Service from 1	1 General Service	kW 2016 - 30 Day	1.11 Actual	1.19 Actu	al 0.08	120 9.60	(10-20%)
0 F M A M J J A S O N D J I	Electricity Electricity Transmissi Purchased	Y Supply Services Supply Charge ion Services Charge I Electricity Adjustme	nt	4,800 kV 4,800 kV	Wh X Wh X	0.05857 0.01095	\$310.90 281.14 52.56 -22.80	
Month kWh Feb-15 4680 Mar-15 4440	Delivery S	Services - ComEd					\$94.54	[
Apr-15 3720 May-15 3960 Jun-15 3600	Customer Standard M	Charge Metering Charge		0.001		6 10000	17.31 12.38	Taxes/Fee
Jul-15 3840 Aug-15 4560 San 15 3960	IL Electricit	ty Distribution Charge	•	4,800 k	Wh X	0.00115	5.52	(5-15%)
Oct-15 3840 Nov-15 4080	Taxes and	d Other					\$80.42	
Dec-15 4200 Jan-15 5280 Feb-15 4800	Environme Renewable Zero Emissi Energy Eff	ntal Cost Recovery A e Portfolio Standard sion Standard iciency Programs Cost	4dj	4,800 kV 4,800 kV 4,800 kV 4,800 kV \$89	Mh X Mh X Mh X Mh X 24 X	0.00038 0.00189 0.00195 0.00434 2.18900%	1.82 9.07 9.36 20.83	
Month Billed kWh Tem Last Year 156.0 2 Last Month 155.3 2 Current Month 160.0 2	P State Tax			200		(con	15.53 tinued on next page)	

Return only this portion with your check made payable to ComEd. Please write your account number on your check.

To pay by phone call 1-800-588-9477. A convenience fee will apply.

HOW THEY OPERATE

- Objective: Consumer Cost
- Rate of Return Ratemaking

Originally, utilities were allowed to set rates to recover their operating costs on a pass-through basis <u>plus</u> a Return On and Return Of capital expenditures

HOW THEY OPERATE

- Objective: Consumer Cost
- Rate of Return Ratemaking
- Deregulated ("Choice") Markets developed starting in the 1990's

"Deregulation" was intended to reduce the cost of power generation by moving utilities out of the power generation business and introducing competition

HOW THEY OPERATE

- Objective: Consumer Cost
- Rate of Return Ratemaking
- Deregulated ("Choice") Markets developed starting in the 1990's
- Retail energy suppliers entered agreements with consumers to set a price for energy purchases form the wholesale market and schedule delivery of that energy to the local utility and the consumer

"Deregulation" replaced utility-owned power plants with "Independent Power Producers (Exelon, NRG, Calpine), and introduced Retail Energy Suppliers to set energy supply prices for consumers

- Industrial consumers could contract directly with an IPP and arrange for delivery through the regional transmission system and local utility
- Some consumers (residential and small commercial) can still secure electricity supply through the local utility which would source that supply through the RTO/ISO
- C

A

Any consumer could purchase electricity through a retail electricity supplier which will secure supply through the RTO/ISO or directly with an IPP

HOW THEY OPERATE

- Objective: Consumer Cost
- Rate of Return Ratemaking
- Deregulated ("Choice") Markets developed starting in the 1990's
- Retail energy suppliers entered agreements with consumers to set a price for energy purchases form the wholesale market and schedule delivery of that energy to the local utility and the consumer
- Consumers can accept all or no price risk, but just like insurance: more protection comes at a higher price

Consumers can choose pricing that fully exposes them to wholesale market price volatility, or a fixed price that has no volatility for periods of 6 months to 5 years

INDEX SUPPLY PRODUCT

RISK PROFILE

FIXED PRICE PRODUCT

RISK PROFILE

HOW THEY OPERATE

- Objective: Consumer Cost
- Rate of Return Ratemaking
- Deregulated ("Choice") Markets developed starting in the 1990's
- Retail energy suppliers entered agreements with consumers to set a price for energy purchases form the wholesale market and schedule delivery of that energy to the local utility and the consumer
- Consumers can accept all or no price risk, but just like insurance: more protection comes at a higher price
- Consumers can also layer purchases to manage their exposure to changing wholesale market prices for power

Consumers can choose pricing that fully exposes them to wholesale market price volatility, or a fixed price that has no volatility for periods of 6 months to 5 years

BLOCK & INDEX PRODUCT

STRUCTURE

RISK PROFILE

LAYERED BLOCK & INDEX PRODUCT

RISK PROFILE

Consumers can choose pricing that fully exposes them to wholesale markets

RETAIL ENERGY MARKETS

HOW THEY OPERATE

- Objective: Consumer Cost
- Rate of Return Ratemaking
- Deregulated ("Choice") Markets developed starting in the 1990's
- Retail energy suppliers entered agreements with consumers to set a price for energy purchases form the wholesale market and schedule delivery of that energy to the local utility and the consumer
- Consumers can accept all or no price risk, but just like insurance: more protection comes at a higher price
- Consumers can also layer purchases to manage their exposure to changing wholesale market prices for power
- Consumers that do not use a retail energy supplier receive default pricing
 METROPOLITAN MAYORS CAUCUS | THE POWER BUREAU

DISCUSSION

METROPOLITAN MAYORS CAUCUS | THE POWER BUREAU

KEY CONCEPTS

The following are the key concepts for this session:

Wholesale Energy Markets	Involve energy sales between generators and resellers
	The focus of wholesale markets is on reliability – not price
	 Organized markets (like PJM) secure generation through long term (Capacity) and short term (Day-Ahead-Real Time, Ancillaries) delivery contracts
	 Prices for Capacity, Day-Ahead-Real Time, Ancillaries are set through auctions
	 Prices change annually (Capacity) and hourly (Day-Ahead-Real Time, Ancillaries)
Retail Energy Markets	Involve energy sales between resellers and consumers
	The focus of retail markets is on cost – reliability is assumed
	 Deregulated retail markets (like Illinois) allow consumers served by investor-owned utilities to select their supplier
	 Retail Energy Suppliers purchase variable rate energy and capacity from the wholesale market and sell partial or fully-fixed rate energy to consumers
	 Retail Energy Suppliers are really selling a price hedge (like insurance) – not actual energy

DISCUSSION AND QUESTIONS

Open to the class

Mark Pruitt Principal | The Power Bureau <u>markjpruitt@thepowerbureau.com</u> C: (219) 921-3828