# Energy Academy

Session #1: Introduction Metropolitan Mayors Caucus | The Power Bureau

January 18, 2023





| OVERVIEW                       | <ul><li>Participants</li><li>Course Description</li></ul>              |
|--------------------------------|------------------------------------------------------------------------|
| ENERGY SOURCES &<br>USES       | <ul><li>Energy</li><li>CO2 Emissions</li></ul>                         |
| THE ELECTRIC GRID              | <ul><li>Generation</li><li>Transmission</li><li>Distribution</li></ul> |
| ENERGY & EMISSIONS<br>PATTERNS | <ul><li>National</li><li>Illinois</li></ul>                            |
| DISCUSSION                     | <ul> <li>Open</li> </ul>                                               |



METROPOLITAN MAYORS CAUCUS | THE POWER BUREAU

#### INTRODUCTIONS

Mark Pruitt

Principal | The Power Bureau markjpruitt@thepowerbureau.com (219) 921-3828

| Current<br>Work     | <ul> <li>Power Bureau. Advisor on energy policy, planning, and procurement.</li> <li>Illinois Community Choice Aggregation Network. Municipal aggregation and energy purchasing for municipalities</li> </ul>       |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Past Work           | Illinois Power Agency. Director of state utility regulator responsible for wholesale electricity planning and purchasing for investor-owned utilities, Renewable Portfolio Standard, Clean Coal Portfolio Standard. |
|                     | <b>University of Illinois.</b> Managed electricity and natural gas purchasing, hedging, billing for state executive agencies.                                                                                       |
|                     | <b>Nicor Solutions.</b> Cogeneration and energy efficiency project developer for federal facilities.                                                                                                                |
| Other<br>Activities | <b>Teaching.</b> Northwestern University, University of Illinois<br><b>Argonne National Laboratory.</b> Energy Transition Consultant for                                                                            |
|                     | Net Zero World (Indonesia)                                                                                                                                                                                          |

1

#### INTRODUCTIONS

- Mark Pruitt
   Principal | The Power Bureau
   markjpruitt@thepowerbureau.com
   (219) 921-3828
- 44 municipalities represented by 74 individual attendees

City of Batavia City of Chicago City of Elgin City of Geneva City of Harvey City of Naperville City of Rockford Village of Bannockburn Village of Barrington Village of Broadview Village of Brookfield Village of Bull Valley Village of Darien Village of Deerfield Village of Forest View

Village of Fox Lake Village of Franklin Park Village of Glenview Village of Grayslake Village of Hanover Park Village of Hazel Crest Village of Hillside Village of La Grange Village of Lincolnshire Village of Mount Prospect Village of Northbrook Village of Oak Park Village of Park Forest Village of Richmond Village of Richton Park

Communities participating in the Energy Academy Program

Village of River Forest Village of Riverside Village of Romeoville Village of Schaumburg Village of South Barrington Village of University Park Village of Villa Park Village of Westchester Village of Western Springs Village of Westmont Village of Winnetka DuPage County Kane County Will County

COURSE DESCRIPTION

Topics

|                                              | WEEKLY CLASSES AND TOPICS                                                                                                                                                                                                                                                               |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Energy Sector:<br>Background                 | <ul> <li>Energy sources and uses</li> <li>Physical System: Generation, Transmission, Distribution</li> <li>Emissions sources and trends</li> </ul>                                                                                                                                      |  |  |
| Energy Markets: Supply,<br>Demand and Prices | <ul> <li>Wholesale markets: Energy, Capacity &amp; Ancillaries</li> <li>Wholesale operations: Auctions and rates</li> <li>Retail Markets: Energy Supply, Delivery and Taxes</li> <li>Retail Pricing Options: Default, Fixed Price, Variable Price</li> </ul>                            |  |  |
| Energy Business:<br>Production and Utilities | <ul> <li>Early Days of Industry: Edison, Tesla, Westinghouse</li> <li>Public Power: Municipal utilities and electric cooperatives</li> <li>Birth of the Modern Utilities: Insull, cost-of-service regulation</li> <li>The Regulatory Compact: Trading monopoly for oversight</li> </ul> |  |  |
| Energy Policy: Context<br>and Outlook        | <ul> <li>Drivers: Consumers, Business, Environment, Climate, Equity</li> <li>Legislative Primer: Review of the policymaking process</li> <li>State of Illinois Policies: PUA, Choice Law, IPA, EIMA, FEJA, CEJA</li> <li>Federal Policies: IIJA, IRA</li> </ul>                         |  |  |
| Energy Transition: Goals<br>and Constraints  | <ul> <li>Decarbonization</li> <li>Adoption and Impacts of electrification</li> <li>Constraints: Policy, Regulatory, and Markets Interactions</li> </ul>                                                                                                                                 |  |  |
| Energy Transition:<br>Renewable Energy       | <ul> <li>Technology review: Wind, solar, geothermal, landfill gas</li> <li>Past deployments and the outlook</li> <li>Renewable Options in Illinois</li> </ul>                                                                                                                           |  |  |
| Energy Transition: Energy<br>Efficiency      | <ul> <li>Technology review: Lighting, controls, microgrids, Smart Cities</li> <li>Past deployments and the outlook</li> <li>Energy Efficiency Programs in Illinois</li> </ul>                                                                                                           |  |  |

#### COURSE DESCRIPTION

- Topics
- Post course assistance

Additional 10 hours to support planning for local energy programs and policies

| Renewable Energy<br>Purchasing                        | <ul> <li>Negotiating Virtual Power Purchase Agreements</li> <li>Leveraging CCA program purchases</li> </ul>          |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Promoting Local Solar<br>Development                  | <ul><li>Group Buy programs</li><li>Community Driven Community Solar</li></ul>                                        |
| Attracting/Capturing<br>funding for local initiatives | <ul> <li>Federal: IIJA, IRA,QOZ</li> <li>State: FEJA, CEJA</li> <li>Local: PACE</li> </ul>                           |
| Energy Policy Planning &<br>Development               | <ul> <li>Local: Permits, Zoning, Purchasing, Codes</li> <li>State: Community solar, Joint Action Agencies</li> </ul> |

SOME POTENTIAL TOPICS BASED ON INTERESTS OF ATTENDEES



## ENERGY SOURCES & USES





Estimated U.S. Energy Consumption in 2021: 97.3 Quads





Image Credit: Department of Energy

United States Energy-related Carbon Dioxide Emissions in 2021: 4,863 million metric tons





### THE ELECTRIC GRID

METROPOLITAN MAYORS CAUCUS | THE POWER BUREAU

# Key Elements of the US Grid



Image Credit: <u>Ballotopedia.org</u>

Traditional Power Assets are (generally) located near population centers



#### GENERATION

#### POWER PLANTS

- Natural Gas (blue)
- Coal (black)
- Petroleum (brown)
- Nuclear (purple)

Renewable Power Assets are (generally) proximate to the renewable resource

Torreón

Culiacan

Monterrey

#### GENERATION

#### GENERATING CAPACITY

- Solar (yellow)
- Wind (gray)
- Hydroelectric (blue)
- Biomass (green)
- Geothermal (magenta)

~

#### GENERATION

#### GENERATING CAPACITY (1,143,757 MW)

 The maximum generating potential from a power asset

#### Fossil Fuel and Nuclear Generating Capacity and Generation still Dominate

Generating Capacity by Fuel Type (1.14 million MW) (US, 2021, EIA)



- Natural Gas (43.0%)
- Coal (18.0%)
- Renewables (37.0%)
- Nuclear (8.0%)
- Petroleum (2.0%)

#### GENERATION

#### GENERATING CAPACITY (1,143,757 MW)

 The maximum generating potential from a power asset

#### ANNUAL GENERATION (4,120,000,000 MWh)

 The total amount of electricity generated by power plants in a year

#### Fossil Fuel and Nuclear Generating Capacity and Generation still Dominate

Generating Capacity by Fuel Type (1.14 million MW) (US, 2021, EIA)



Annual Generation by Fuel Type (4.12 billion MWh) (US, 2021, EIA)



Natural Gas (38.0%)

- Coal (22.0%)
- Renewables (20.0%)
- Nuclear (19.0%)
- Petroleum (0.5%)

#### GENERATION

#### GENERATING CAPACITY (1,143,757 MW)

 The maximum generating potential from a power asset

#### ANNUAL GENERATION (4,120,000,000 MWh)

 The total amount of electricity generated by power plants in a year

#### CAPACITY FACTOR

- A measure of how often a power asset is operating at maximum power
  - Natural Gas (36.0%)
  - Coal (49.7%)
  - Renewables (29.9%)
  - Nuclear (93.0%)
  - Petroleum (8.2%)

#### Fossil Fuel and Nuclear Generating Capacity and Generation still Dominate

Generating Capacity by Fuel Type (1.14 million MW) (US, 2021, EIA)





Annual Generation by Fuel Type (4.12 billion MWh) (US, 2021, EIA)



- Natural Gas (38.0%)
- Coal (22.0%)
- Renewables (20.0%)
- Nuclear (19.0%)
- Petroleum (0.5%)

#### TRANSMISSION

#### Structure

 138-765kV lines that connect power assets to local utility systems

#### Purpose

- Redundancy (reliability)
- Resource variety (cost)

#### The Transmission system is a network to connect generation to local utilities





Image Credit: ARC GIS

#### TRANSMISSION

#### INTERCONNECTIONS

- Transmission networks that interconnect allow electricity to flow throughout regions (subject to physics and economics)
- Some flows between Interconnections
- North America has five (5) primary Interconnections
  - Western Interconnection (west of the Rockies)
  - Eastern Interconnection (east of the Rockies
  - Texas Interconnection (most of Texas)
  - Quebec Interconnection
  - Alaska Interconnection



#### DISTRIBUTION

#### TRADITIONAL LOCAL DELIVERY

- High voltage electricity from the Transmission system is converted ("stepped down") to lower voltage at local utility substations
- Lower voltage electricity flows from utility substations to transformers which step down voltage to meet consumer needs
- Generally designed with a one-way flow of energy in mind (from substation to consumer)



#### DISTRIBUTION

#### **SMART GRID**

- New distribution system design concept
  - Two-way energy flows (grid to consumer, consumer to grid) and more automated controls
  - Requires significant technology and infrastructure upgrades to distribution systems
  - Intended to facilitate more robust energy options (distributed generation, energy storage, demand response, electric vehicles, etc.)

#### Demand Electric vehicles -response > Positive impact; decreased > Anticipating energy consumption in real time to CO<sub>2</sub> emissions adapt production accordingly > Main challenges for adoption and thus avoiding use and/or are costs, batteries, and safe, construction of fossil-based accessible, and intelligent generation capacities electrical infrastructure Utility network Qistributer Active energy 3 efficiency Smart energy 2 Flexible distribution generation

The move towards a Smart Grid is intended to deliver more flexibility

> Renewable energy plants: solar, wind, biomass, etc. > Decentralized (generated by the end-users themselves) Mid-term positive impacts on CO<sub>2</sub> emissions decrease

Image Credit: Schneider Electric

> Distribution needs to become more automated, protected, and efficient - more flexible to manage the challenge of integrating renewable energy sources while optimizing capacity and demand

> Making energy visible > Providing means to optimize energy consumption > Offering new technologies that are now available > Achieving up to 30% energy savings and with fast payback

METROPOLITAN MAYORS CAUCUS | THE POWER BUREAU



## ENERGY & EMISSIONS PATTERNS

#### **ENERGY PATTERNS (US)**

#### TOTAL ELECTRICITY GENERATION

- Generation has plateaued in recent years
- Nuclear generation is relatively stable
- Coal is in decline
- Natural gas has greatly increased
- Renewables have shown modest gains

#### Electricity generation in the US has remained stable over the past 12 years



Image Credit: Statista

#### **EMISSIONS PATTERNS (US)**

#### **EMISSION SOURCES**

- Likely a temporary drop in all sectors in 2020 due to Covid
- Electric generation sector appears to have longer term downward trend
- Most other sectors appear relatively level

#### The overall GHG emissions trend in the US is downward

#### U.S. Greenhouse Gas Emissions by Economic Sector, 1990-2020



#### **EMISSIONS PATTERNS (US)**

#### GHG GASES

- Longer term downward trend in CO2 emissions
- Relatively flat changes for other GHGs

The overall CO2 emissions trend in the US is downward

#### U.S. Greenhouse Gas Emissions by Gas, 1990-2020



#### EMISSIONS PATTERNS (ILLINOIS)

#### ILLINOIS POWER SUPPLY & DEMAND

- Overall generation levels are falling
- Most reduction from coal-fired generation assets
- Nuclear remains stable
- Renewables sector remains fairly low in proportion to overall generation (11% of total)

#### CO2 Emissions in Illinois from all sources is falling

Illinois Generation and Consumption Levels (Megawatt Hours, EIA)



Source Data: US DOE (EIA)

#### EMISSIONS PATTERNS (ILLINOIS)

# OVERALL CO2 EMISSIONS ARE FALLING

- Overall emissions are falling
- Transportation sector is now the ;largest emitting sector

#### CO2 Emissions in Illinois from all sources is falling



#### **EMISSIONS PATTERNS (ILLINOIS)**

#### ILLINOIS POWER SECTOR A MAJOR CONTRIBUTOR TO ILLINOIS MEETING ITS US CLIMATE ALLIANCE GOALS

 Implement policies that advance the goals of the Paris Agreement, aiming to reduce greenhouse gas emissions by at least 26-28 percent below 2005 levels by 2025.

#### CO2 Emissions from the Illinois power sector are projected to continue falling

Historical & Projected Emissions from Illinois Electricity Sector (Million Metric Tonnes CO2)



Source Data: US DOE (EIA)



## DISCUSSION

METROPOLITAN MAYORS CAUCUS | THE POWER BUREAU



Mark Pruitt Principal | The Power Bureau <u>markjpruitt@thepowerbureau.com</u> C: (219) 921-3828