

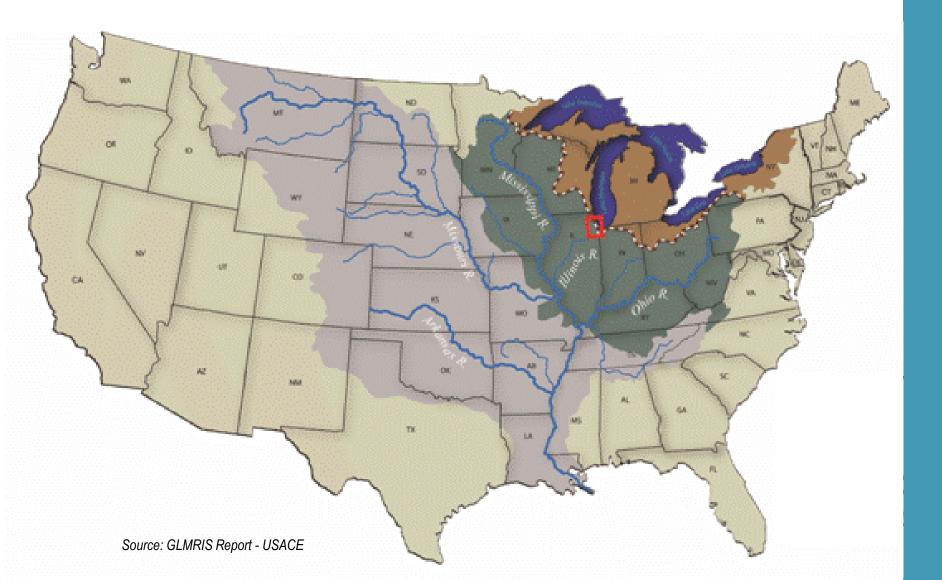


# AQUATIC NUSIANCE SPECIES AND THE CAWS

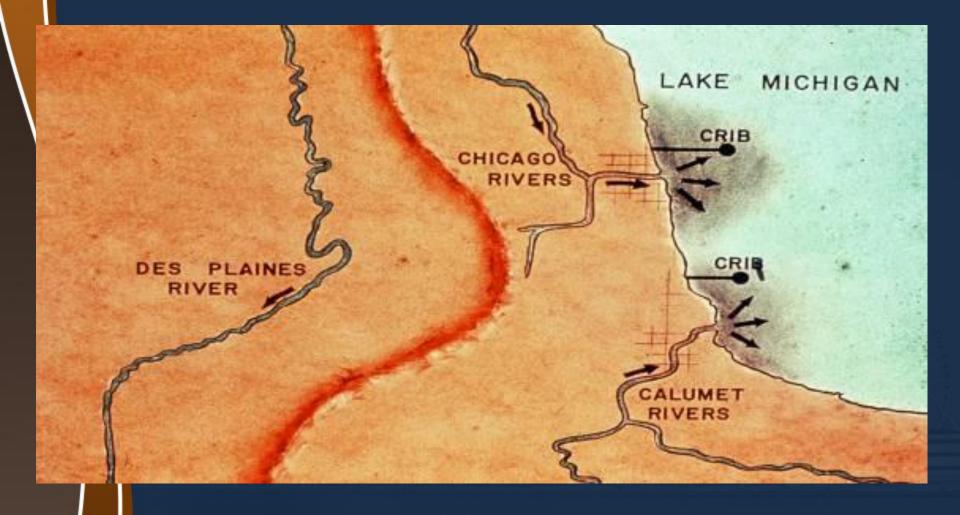
**Metropolitan Mayors Caucus** 

FC

June 3, 2015

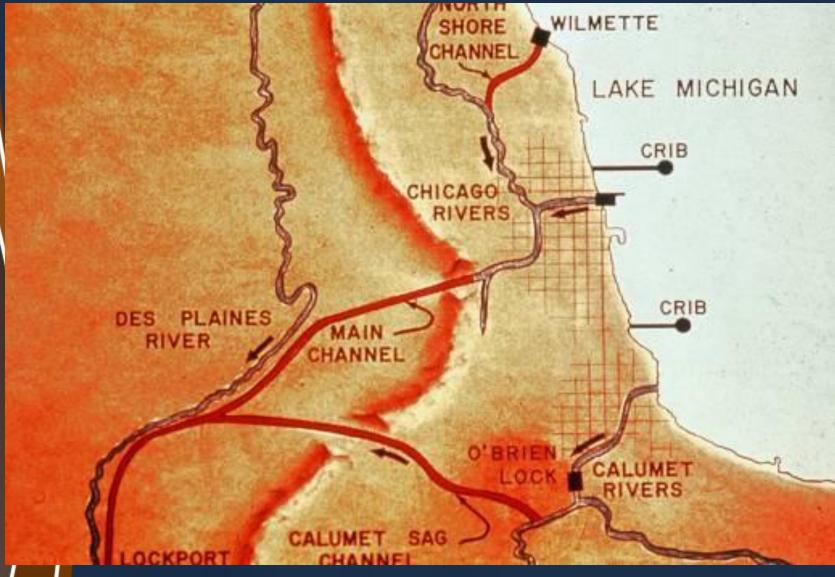

## OUTLINE

- CAWS Background
- Aquatic Nuisance Species (ANS)
  - $_{\circ}$  Background
  - $_{\circ}\,$  Risk & Impacts
  - Risk reduction measures
- Information presented to the Advisory Committee

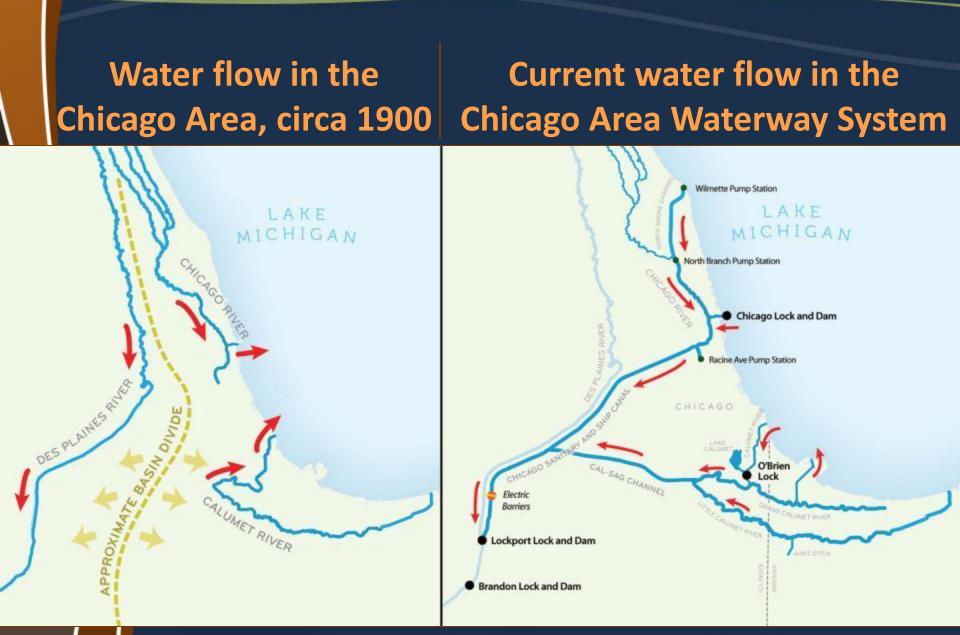

## **WORKING CRITERIA**

- Prevent 2-way ANS transfer
- Maintain/Enhance efficient waterway transportation
- Reduce flood risk in IL and IN
- Reduce impact of CSOs in IL and IN
- Protect/improve water quality and meet environmental regulations
- Reduce discretionary diversions from Lake MI
- Create local benefits and facilitate cost sharing

#### Why Chicago Area Waterway System (CAWS)?



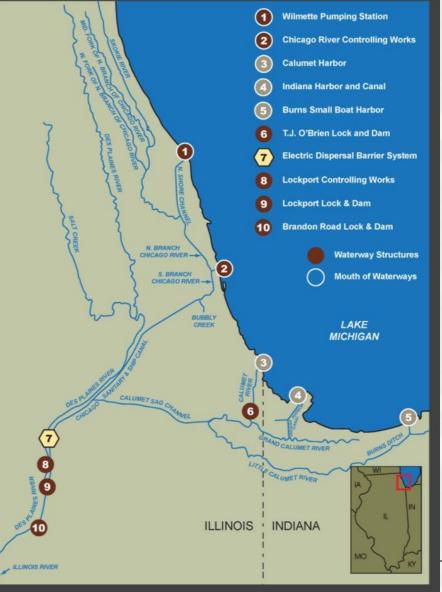

# Pre-CAWS 1860-1900









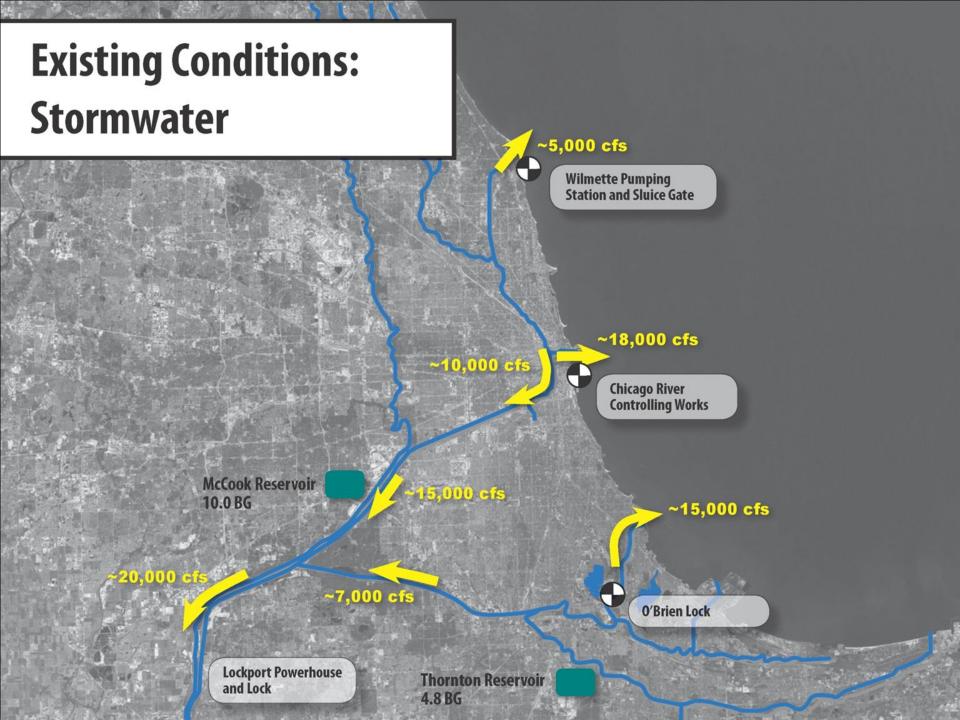






Graphics courtesy of the Great Lakes Commission

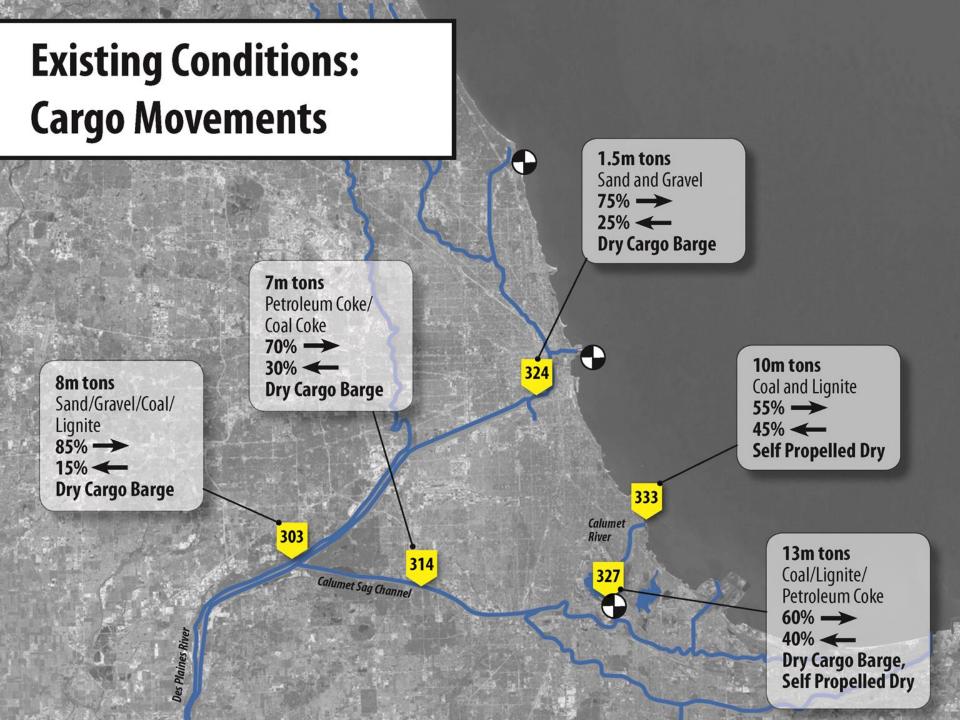
HR

#### CHICAGO ÁREA WATERWAY SYSTEM



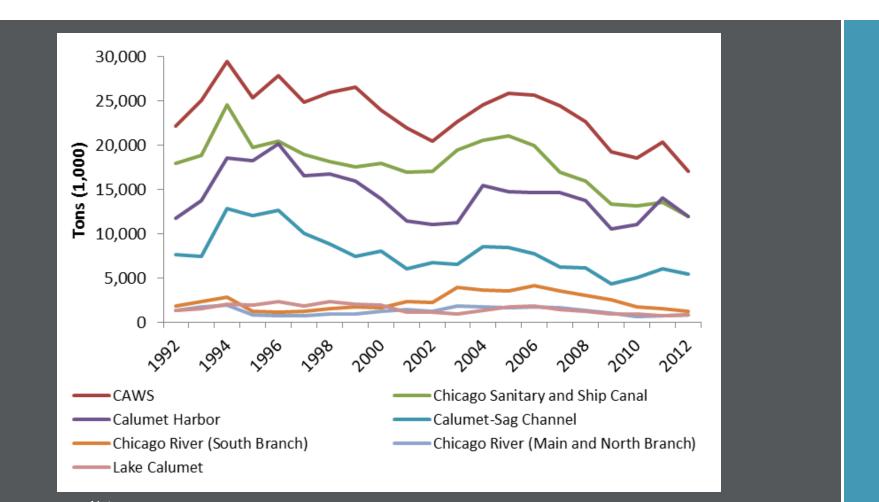

# **CAWS** Functions

- Complex, multi-use waterway
  - Navigation
    - Cargo
    - Commercial Passenger and Governmental (Fire, Police, etc)
    - Recreational
  - Water Supply & Conveyance
    - Municipal wastewater
    - Industrial users
  - Flood Risk Management
    - Stormwater
    - Combined sewer overflow
  - Recreation
- Primary connection between Great Lakes & Mississippi River basins


ĨŦĨ

Source: GLMRIS Report - USACE PLANNING SMART BUILDING STRONG®









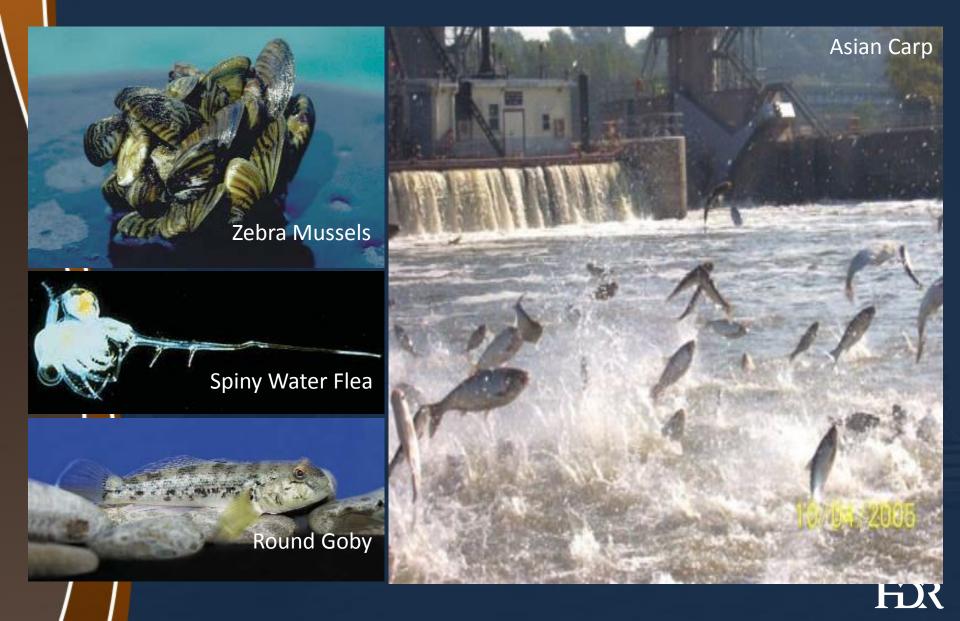

#### **HISTORICAL TONNAGE FOR WATERWAY**

By Segments, 1992 - 2012



#### Notes:

Tonnages include inbound, outbound, through, and internal traffic on each segment, as applicable (i.e. tonnage passing through the CAWS to/from Illinois River and Lake Michigan).


## SHORT AND LONG TERM FORECASTS

By Commodity (ktons)

| Commodity              | Current           | 20     | 20     | 2040   |        |  |
|------------------------|-------------------|--------|--------|--------|--------|--|
| Commodity              | 2011/2012 Average | Low    | High   | Low    | High   |  |
| Coal                   | 5,495             | 2,000  | 4,000  | 1,000  | 2,200  |  |
| Petroleum              | 3,336             | 3,000  | 4,000  | 2,500  | 6,100  |  |
| Chemicals              | 1,247             | 500    | 1,500  | 250    | 2,300  |  |
| Crude Materials        | 4,881             | 7,000  | 8,200  | 11,500 | 13,500 |  |
| Manufactured Goods     | 3,465             | 1,600  | 4,300  | 900    | 7,200  |  |
| Food and Farm          | 262               | 0      | 1,000  | 0      | 1,800  |  |
| Manufactured Equipment | 24                | 0      | 200    | 0      | 200    |  |
| Unknown NEC            | 13                | 0      | 200    | 0      | 900    |  |
| Total                  | 18,721            | 14,100 | 23,400 | 16,150 | 34,200 |  |

# AQUATIC NUISANCE SPECIES (ANS)

# What species are a risk?



# **Targeted Species**

- Pathways -> 2-way Aquatic Focus
- Categories
  - Fish
  - Plant
  - Algae
  - Crustacean
  - Virus
- Modes of movement
  - Floating
  - Swimming
  - Assisted (i.e. hitchhiking)

Diverse factors require distinct assumptions

#### Mississippi River

|                  |                                                  | <b>1</b>                                | 1                                                                        |                  |  |  |  |
|------------------|--------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|------------------|--|--|--|
| Organism<br>Type | Species                                          | Current Dispersal<br>Location Mechanism |                                                                          | Picture          |  |  |  |
| Fish             | Silver Carp<br>(Hypophthalmichthys<br>molitrix)  | At the<br>CAWS                          | Active                                                                   | X                |  |  |  |
|                  | Bighead Carp<br>(Hypophthalmichthyes<br>nobilis) | At the<br>CAWS                          | swimming                                                                 | 1 and the second |  |  |  |
| Crustacean       | Scud<br>(Apocorophium lacustre)                  | At the<br>CAWS                          | Passive drift;<br>Benthic<br>movement;<br>Hull fouling;<br>Ballast water |                  |  |  |  |

| Great Lakes      |                                                                       |                                                                                    |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Organism<br>Type | Species                                                               | Current<br>Location                                                                | Dispersal<br>Mechanisms                                                                                              | Picture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Crustacean       | Fishhook<br>Water Flea<br>(Cercopagis pengoi)                         | At the<br>CAWS                                                                     | Passive drift;<br>Hull fouling;<br>Ballast water                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| erubiatetai      | Bloody Red<br>Shrimp<br>(Hemimysis anomala)                           | At the<br>CAWS                                                                     | Passive drift;<br>Hull fouling;<br>Ballast water                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                  | Grass Kelp<br>(Enteromorpha flexuosa)                                 | Muskegon<br>Lake                                                                   | Passive drift;<br>Temporary<br>vessel<br>attachment                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Algae            | Red Algae<br>(Bangia atropwpwrea)                                     | Uncertain,<br>documented<br>near Chicago                                           | Passive drift;<br>Temporary<br>vessel<br>attachment                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                  | Diatom<br>(Stephanodiscus<br>binderanus)                              | At the<br>CAWS                                                                     | Passive drift;<br>Temporary<br>vessel<br>attachment                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Plant            | Reed Sweetgrass<br>(Glyceria maxima)                                  | Milwaukee<br>County, WI                                                            |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                  | Threespine<br>Stickleback<br>(Gasterosteus aculeatus)                 | Found in<br>CAWS                                                                   | Active<br>swimming;<br>Ballast water                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Fish             | Ruffe<br>(Gymnocephalus cernuus)                                      | Green Bay,<br>WI                                                                   | Active<br>swimming;<br>Ballast water                                                                                 | and the Pro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                  | Tubenose Goby<br>(Proterorhinus<br>semilunaris)                       | Duluth-<br>Superior<br>Harbor                                                      | Active<br>swimming;<br>Ballast water                                                                                 | A States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Virus            | Viral<br>Hemorrhagic<br>Septicemia -<br>VHSv<br>(Novirhabdovirus sp.) | All Great<br>Lakes:<br>Lake<br>Michigan-<br>Waukegan<br>and<br>Winthrop<br>Harbors | Viral disease<br>of freshwater<br>and marine<br>fish;<br>transported<br>through:<br>infected fish,<br>eggs, or water | Ender<br>Ander<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Co |  |  |  |  |  |

18

## **GLMRIS ANS OF CONCERN - CAWS**

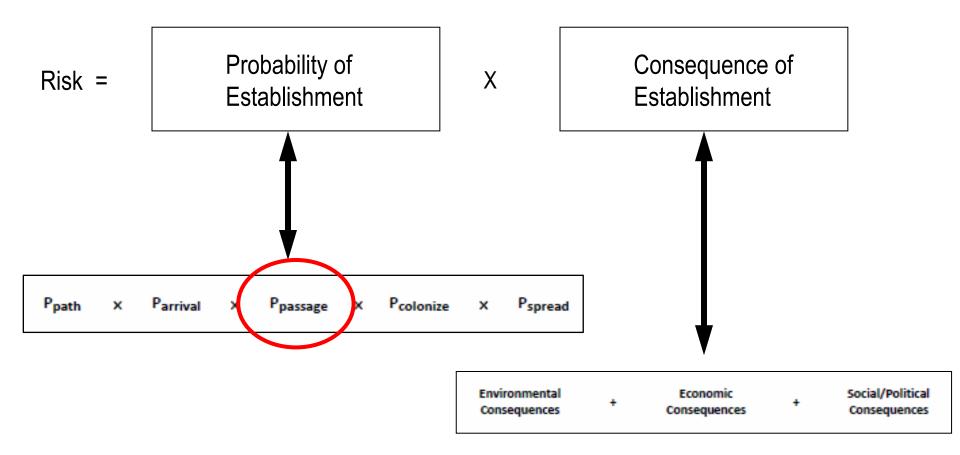
|                                                            | T <sub>0</sub> | T <sub>10</sub> | T <sub>25</sub> | <b>T</b> <sub>50</sub> |
|------------------------------------------------------------|----------------|-----------------|-----------------|------------------------|
| Species Posing Risk of Adverse Impact to Great Lakes       |                |                 |                 |                        |
| Scud (Apocorophium lacustre)                               | М              | М               | М               | М                      |
| Silver carp (Hypophthalmicthys molitrix)                   | L              | L               | М               | М                      |
| Bighead carp (Hypophthalmicthys noblis)                    | L              | L               | М               | М                      |
| Species Posing Risk of Adverse Impact to Mississippi River |                |                 |                 |                        |
| Bloody red shrimp (Hemimysis anomala)                      | Н              | Н               | Н               | Н                      |
| Fishhook waterflea (Cercopagis pengoi)                     | L              | L               | М               | Н                      |
| Grass kelp (Enteromorpha flexuosa)                         | L              | М               | М               | М                      |
| Red algae (Bangia atropurpurea)                            | М              | М               | М               | М                      |
| Diatom (Stephanodiscus binderanus)                         | М              | М               | М               | М                      |
| Reed sweetgrass (Glyceria maxima)                          | L              | L               | L               | М                      |
| Threespine stickleback (Gasterosteus aculeatus)            | М              | М               | М               | М                      |
| Tubenose goby (Proterorhinus semilunaris)                  | L              | М               | М               | М                      |
| Ruffe (Gymnocephalus cernuus)                              | L              | L               | L               | М                      |
| Viral Hemorrhagic Septicemia (Novirhabdovirus sp.)         | М              | М               | М               | М                      |

- 13 ANS of Concern
  - $_{\circ}$  Rated either H, M risk at some time step
- Five categories to control
  - ∘ Fish, Plant, Algae, Crustacean, Virus

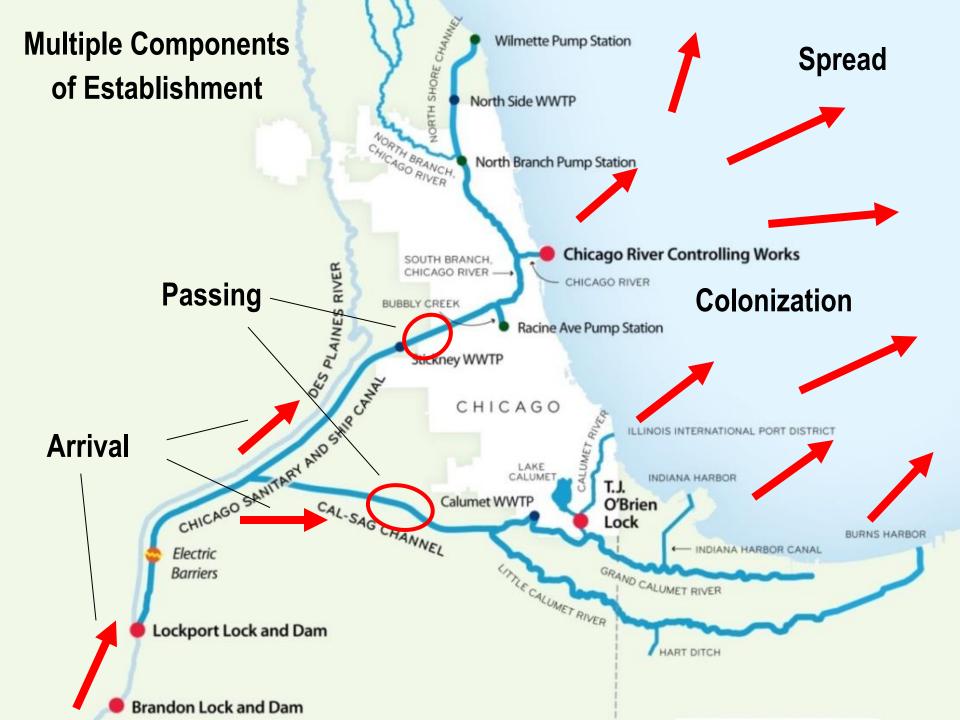
Source: GLMRIS Report - USACE

### DISPERSAL AND ANS SPECIES

- Dispersal
  - Active: movement by its own means (e.g., swimming)
  - Passive: movement by other means, such as water flow, boats, or another object (e.g., floating or hitchhiking)
- ANS Species
  - Primarily 13 species from GLMRIS
  - $_{\odot}\,$  Consideration of additional species in future
- Aquatic Pathway Focus
  - Other means of transfer human, bird/terrestial

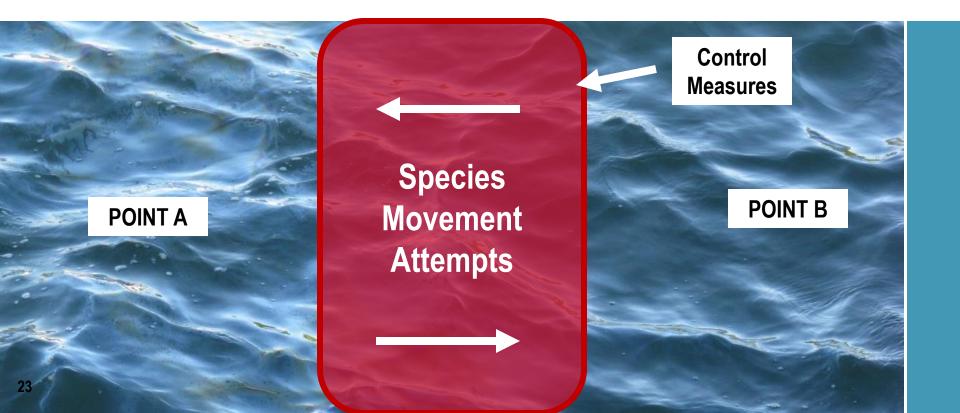



### POTENTIAL IMPACTS AND RISK


- Environmental consequences to ecosystem/habitat and native species
- Economic –already transferred ANS estimated to cost \$10s M to \$100s M+ annually per species (sea lamprey/zebra mussels)
- Social/Political potential effects on recreation and/or regulatory requirements



#### **GLMRIS Risk Assessment**




Source: GLMRIS Report - USACE

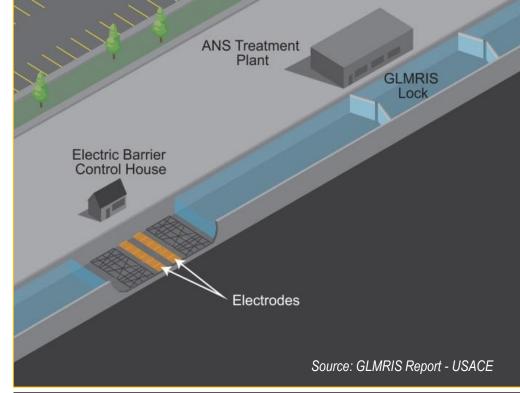


## PASSAGE REDUCTION EFFICIENCY

- Preventing dispersal from Point A to Point B
- Baseline (0% efficiency) = 'open river' with no control measures
- Relative to movement at a single point, not probability of establishment



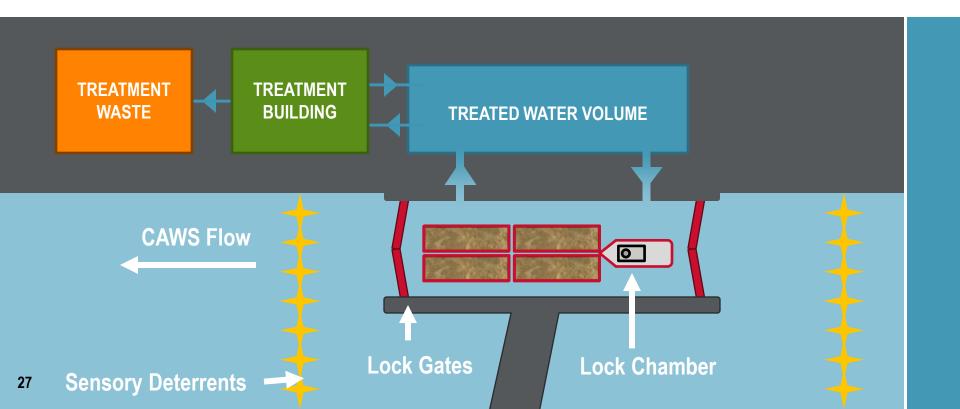
## **CURRENT ANS RISK REDUCTION EFFORTS**


- Electric Dispersal Barrier Operations and Enhancements USACE
- Brandon Road ANS Lock Investigation USACE
- Research on CO<sub>2</sub> and water guns (Asian carp) USGS
- Commercial fishing (Asian carp) in IL Waterway IDNR
- Monitoring/inspection/outreach multiple states



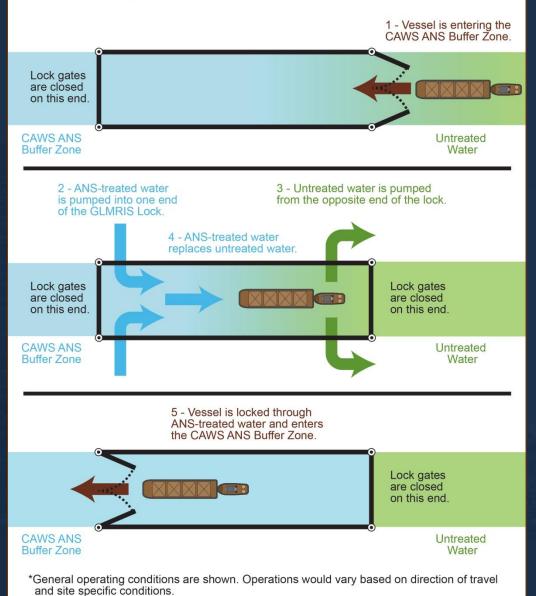
## **ANS Lock System**

- Control Technologies
  - Flushing lock
  - Electric barrier
  - Water treatment (CO2, UV, Chlorine, etc.)
- Species
  - Varies w/ controls
  - Typ. swimmers & floaters
- Maritime transportation
  - Implications vary w/ controls
  - Additional investigations needed


#### System has Numerous Controls -Varies by Location

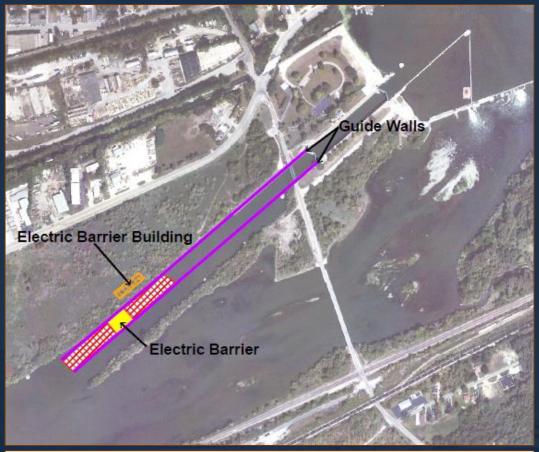


#### Sample ANS Lock System Configuration


## **ANS LOCK SYSTEM**

- ANS lock system is a combination of control measures
- Contains physical, chemical and biological measures used in arrangement designed to increase efficiency.
- Estimated to provide >75% reduction in species movement through a specific point of control.




#### **GLMRIS LOCK**

Prevents the transfer of ANS that move by Passive Draft along the current of water.



## **Conceptual ANS Lock System at Brandon Lock**

- Control Technologies
  - 1-way Flushing lock
  - Electric barrier
- Species
  - Swimmers
  - Floaters
  - No Lake MI species
- Maritime transportation
  - Fill/travel times
  - Stray currents
  - Operator/vessel safety



#### Legend Guide Wall Electric Barrier Building Electric Barrier Safety Zone

June 2013



#### Source: GLMRIS Report - USACE

# **ANS Buffer Zone**

- 2-way species control
- Minimize impacts to users/uses
- Upstream/downstream control
- Combination of 1-way and 2-way control points
- Various technologies
- Miss River and Lake MI species
  - Phased implementation



Buffer Zone Concept (example for illustrative purposes only)

System has Numerous Controls – Varies by Location

# **Maritime Transportation**

- Potential Implications (depending upon type of control point)
  - Travel/lockage times and delays
  - Passenger/operator safety
  - Shipping rates and other costs
  - Other
- Influencing Assumptions
  - Holding/contact times
  - Water volumes/rates
  - Structure/vessel integrity
  - Other

What controls will maintain efficient maritime transportation?

# RELATING PASSING EFFICIENCY TO RISK REDUCTION

## **CONTROL MEASURES BY SPECIES**

- Qualitative Relative Rating Numerical & Color
  - Dark Green (3A) highest
  - $\circ$  Green (3B) medium
  - Light Green (3C) lowest

| 95% | 95% or greater efficient preventing movement - low uncertainty |
|-----|----------------------------------------------------------------|
| 85% | 85%-95% efficient preventing movement - medium uncertainty     |
| 75% | 75%-85% efficient preventing movement - high uncertainty       |

#### Levels of Uncertainty Outlined in GLMRIS

- High = Little or no data were available, or there was a very broad range in the nature and severity of consequences including extreme consequences, and the probability or consequence ratings (as well as all assumptions used to develop the ratings) were based on professional judgment;
- Medium = Good data were available but some major data gaps were still evident, or there was a broad range in the nature and severity of the consequences but no extreme consequences were indicated, such that the probability or consequence rating is based on a mixture of ANS-specific data, data from similar species, anecdotal data, and professional judgment;
- Low = Good ANS-specific data were available (e.g., peer-reviewed, ANS specific scientific publications and reports), and no significant data gaps were known, and there was only a limited range of possible consequences; and
- **None** = Adequate data were available to fully support the probability and consequence ratings.

### **CONTROL MEASURE COMBINATIONS BY SPECIES**

|                                     | Estimated Passage Reduction Efficiency                                                                                |                  |                 |                 |                           |                  |                |                         |                       |                    |                |                |                 |                |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|-----------------|-----------------|---------------------------|------------------|----------------|-------------------------|-----------------------|--------------------|----------------|----------------|-----------------|----------------|
|                                     |                                                                                                                       | Active Dispersal |                 |                 |                           |                  | Active/Passive |                         |                       | Passive Dispersal  |                |                |                 |                |
| Control                             |                                                                                                                       |                  |                 | Fis             | h                         |                  |                | Crustacea               | ns                    | Plants             |                | Algae          |                 | Disease        |
| Measure<br>Combination              | Description                                                                                                           | Silver<br>Carp   | Bighead<br>Carp | Ruffe           | Threespine<br>Stickleback | Tubenose<br>Goby | Scud           | Bloody<br>Red<br>Shrimp | Fishhook<br>Waterflea | Reed<br>Sweetgrass | Red<br>Algae   | Diatom         | Grass<br>Kelp   | VHSv           |
|                                     |                                                                                                                       | T <sub>25</sub>  | T <sub>25</sub> | T <sub>50</sub> | T <sub>0</sub>            | T <sub>10</sub>  | T <sub>0</sub> | T <sub>0</sub>          | T <sub>25</sub>       | T <sub>50</sub>    | T <sub>0</sub> | T <sub>0</sub> | T <sub>10</sub> | T <sub>0</sub> |
| ANS Lock<br>System<br>Combination 1 | Physical - screening<br>Chemical - general chemicals<br>Biological - electric deterrent                               | 85%              | 85%             | 85%             | 85%                       | 85%              | 75%            | 75%                     | 75%                   | 85%                | 75%            | 75%            | 85%             | 75%            |
| ANS Lock<br>Vstem<br>Combination 2  | Physical - lethal temperature<br>Chemical - none<br>Biological - electric deterrent                                   | 85%              | 85%             | 85%             | 85%                       | 85%              | 85%            | 85%                     | 85%                   | 85%                | 85%            | 85%            | 85%             | 85%            |
| ANS Lock<br>System<br>Combination 3 | Physical - screening & ultraviolet light<br>Chemical - alteration of water quality<br>Biological - electric deterrent | 85%              | 85%             | 85%             | 85%                       | 85%              | 75%            | 75%                     | 75%                   | 75%                | 75%            | 75%            | 75%             | 85%            |
| Physical Barrier                    | Physical - physical barrier<br>Chemical - none<br>Biological - none                                                   | 95%              | 95%             | 95%             | 95%                       | 95%              | 95%            | 95%                     | 95%                   | 95%                | 95%            | 95%            | 95%             | 95%            |



#### **EXAMPLE OF REDUCTION IN PASSING PROBABILITY**

| ANS Controls Passage | Probabili | <b>Risk Reduction</b>            |    |  |  |
|----------------------|-----------|----------------------------------|----|--|--|
| Reduction Efficiency | Baseline  | BaselineWith ANS ControlsFactor1 |    |  |  |
| 75%                  | 100%      | 25%                              | 4  |  |  |
| 85%                  | 100%      | 15%                              | 7  |  |  |
| 95%                  | 100%      | 5%                               | 20 |  |  |

#### Notes:

1. Assumes all other probability elements are held constant

#### EXAMPLE OF PASSING PROBABILITY IMPACTS ON PROBABILITY OF ESTABLISHMENT

|                          | Example           | Probability Element |         |                      |                       |        | Change in              | <b>Risk Reduction</b> |  |
|--------------------------|-------------------|---------------------|---------|----------------------|-----------------------|--------|------------------------|-----------------------|--|
| ANS Control              | Species           | Pathway             | Arrival | Passage              | Colonization          | Spread | Passage<br>Probability | Factor                |  |
| No control               | N/A               | 100%                | 80%     | 100%                 | 50%                   | 50%    | N/A                    | N/A                   |  |
| ANS Lock @ 75% Efficient | Scud              | 100%                | 80%     | 25%                  | 50%                   | 50%    | 100% to 25%            | 4 (100% vs 25%)       |  |
| ANS Lock @ 85% Efficient | Grass Kelp        | 100%                | 80%     | 1/                   | 50%                   | 50%    | 100% to 15%            | 7 (100% vs 15%)       |  |
| ANS Lock @ 95% Efficient | TBD               | 100%                | 80%     | <5%                  | 50%                   | 50%    | 100% to <5%            | >20 (100% vs <5%)     |  |
| Physical Barrier         | All               | 100%                | 80%     | <5%                  | 50%                   | 50%    | 100% to <5%            | >20 (100% vs <5%)     |  |
|                          |                   |                     |         |                      |                       |        |                        |                       |  |
|                          | P <sub>path</sub> | x P <sub>arri</sub> | val X   | P <sub>passage</sub> | x P <sub>coloni</sub> | ze X   | P <sub>spread</sub>    |                       |  |

#### <u>Notes</u>:

- 1. Assumes all other probability elements are held constant
- 2. Arrival and Passage are only elements GLMRIS alternatives are expected to impact (pathway, colonization, and spread are all independent)

## **PASSAGE REDUCTION FINDINGS**

- ANS Lock System combinations > 75% efficient
  - $_{\circ}$  Efficiency varies by species and technology
    - Higher for fish species w/ chemicals than most plant species
    - Higher for lethal temperature for plant species than chemical
  - o Current information suggests lethal temperature provides highest efficiency across all species
  - Uncertainty and/or ongoing development basis for range in efficiencies
- Physical Barrier > 95% efficient
- Discussion Framework
  - Ratings based on pathway with lowest reduction efficiency
  - > 85% efficient passage reduction for Great Lakes to Mississippi species Brandon Road 1-way
  - > 95% efficient passage reduction for Mississippi to Great Lakes species cumulative effects

#### FINDINGS

- Refine ANS control measure evaluation by species
  - $_{\odot}$  Potential for > 85% efficiency or RRF ~ 7 for GLMRIS species
  - Potential for > 95% efficiency or RRF ~ 20 for Mississippi to Great Lakes species based on cumulative effects
  - Combination with Brandon Road drives cumulative effects
- Frame more fully in context of GLMRIS Risk Assessment
  - $_{\circ}$  Probability of passage  $\rightarrow$  Probability of Establishment  $\rightarrow$  Risk Reduction
  - $_{\circ}$  Several species may establish at any time (T0)
- Enhance risk reduction comparison for long term strategy
  - Weakest pathway link drives overall assessment
  - Further R&D and adaptive management is expected to improve efficiencies and reduce uncertainty

### ADDITIONAL ANS LOCK SYSTEM EVALUATIONS

- Focused set of control measures and combinations
- Interactions of control measures working in combination
- Reduce uncertainty
  - $_{\circ}~$  Mixing effects in lock chamber
  - o Temperature/chemical applications in lock chamber
  - $_{\circ}$  Range of species
- Adaptive Management
  - Efficacy studies lab and field
  - Demonstration projects
  - Continued refinements



# DISCUSSION